
Orifices as throttle for surge tank adaptations 
during a refurbishment by increase of 
installed capacity 

Dr. Nicolas Adam, SHSC, Alpiq SA (previous LCH EPFL)
SCCER-SoE Annual Conference 2018, Horw (LU), 14/09/2018

© J. Fauriel, Alpiq SA



Contents

1. Introduction
2. Experimental and numerical model
3. Main results of the thesis

• Steady head losses
• Characterizing lengths
• Cavitation risk

4. Case study : Renewal of the 3rd Turbine of Gondo HPP
5. Conclusions



N. Adam, Alpiq SA SCCER-SoE Annual Conference 2018, Horw, 14 September 2018 3

Introduction

Source: BFE, Statistique globale suisse de l’énergie 217

Swiss electricity generation (2017)

Energy strategy 2050

•Energy efficiency
•Phase out nuclear energy
•Reduction of CO2 emission

For hydroelectricity: 

36 666 GWh/y. (now)

37 400 GWh/y. (2035)

38 600 GWh/y. (2050)

Building new plants 
AND

Refurbishing existing 
plants


Graph1

		Hydro 59.6 % (run-of-river 25.9 % and storage 33.7%)

		Nuclear 31.7 %

		Thermal plant 4.6 %

		Small hydro, wind, photovoltaic, etc. 4 %



36 666 GWh

19 499 GWh

2 852 GWh

2 470 GWh

Production électrique par type de production

36666

19499

2852

2470



Tabelle1

				Production électrique par type de production

		Hydro 59.6 % (run-of-river 25.9 % and storage 33.7%)		36666

		Nuclear 31.7 %		19499

		Thermal plant 4.6 %		2852

		Small hydro, wind, photovoltaic, etc. 4 %		2470

				Ziehen Sie zum Ändern der Größe des Diagrammdatenbereichs die untere rechte Ecke des Bereichs.
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(Schleiss, 2002)

Introduction
Refurbishment

Current situation
Decision of a refurbishment: Heightening of dam (more head) or increase of 
installed generation capacity (more MW)
Usually, a refurbishment of the hydraulic machinery induces an increase of 
discharge. This increase leads to increase (resp. decrease) maximum (resp. 
minimum) water level in the surge tank. 

Q1

P1

Q2>

P2>

Water level hits the top

Air entrainement, cavitation

Role of a surge tank 
• Reduce, i.e. eliminate, the water 

hammer in the pressure tunnel
• Damp of the acceleration and 

deceleration of flow in the pressure 
tunnel

• Improve the regulation of turbines

Main function principle and 
consequence
• Mass oscillation
 Limit oscillations with extreme 
upsurge and downsurge

(Schleiss,2002 ; 
Chaudry, 1987)
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Introduction
Efficient solution

(Schleiss, 2002)

• For a reasonable increase of discharge (power capacity), the placement of a 
throttle is often an appropriate and economical solution

• This small modification influences the transient behavior of the whole 
waterway system.

• Throttles in surge tank are critical structural elements from which depend 
the good functioning of the whole power plant. 
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Introduction
Throttled surge tank

Throttled surge tank

Different types of throttle

(Giesecke and Monsonyi, 2002)

For a closure:
- The excess discharge flowing in the

pressure tunnel goes in the surge tank

- The pressure (head) under the ST is
equal to the water level in the ST + the
head losses produced by the orifice

Orifice Racks / Bar screen Vortex throttle

Intermediate
shaft Lower chamber

DLC

DIS

Aeration pipe

Upper chamber

d

FMHL + (Hachem et al., 2013) Gondo (Adam et al., 2018) (Steyrer, 1999)
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Introduction
Orifice

Contraction parameter d
Dβ =

Thickness parameter t
Dα =

Inner thickness 
parameter

i
i

t
Dα =

Chamfer angle θ

Shape

Sharp approach flow Chamfer approach flowRounded approach flow

Comments
• k and v are related to a reference area.
• k is the head loss coefficient containing all boundary conditions (i.e. the 

upstream and downstream conditions), recirculation, flow contraction or 
expansion, etc.  

2

2
vH k
g

∆ =
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Modeling

Two different approaches: Experimental and numerical

Experimental Numerical

Head loss evaluation

Influence length

Reattachment length

Cavitation risk

S

S

T S

S

S

S

S TSteady discharge Transient discharge
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Modeling
Experimental facility

A B
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Modeling
Numerical geometry

Numerical model Ansys CFX Version 17.1 or Version 15.0

Validation experimental results

Goal
• Extend to other geometries
• More detail inside view
• Reattachment length
• Cavitation risk

Mesh
• Hexahedrons
• ca. 1.2 million elements

Turbulence model
• SST model

Boundary conditions
• Inlet: Velocity
• Outlet: Pressure 

LExp
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Head loss evaluation

Materials Experimental and numerical results

Empirical equations

𝑘𝑘 = 𝜆𝜆𝑘𝑘 ⋅ Γ𝛼𝛼𝛼𝛼
1 + 𝜏𝜏 1 − 𝛽𝛽2 − 𝛽𝛽2

2

𝛽𝛽4

 Sharp approach flow
 𝜆𝜆𝑘𝑘 = 1
 Γ𝛼𝛼𝛼𝛼 = 1 − 0.947 𝛼𝛼𝑖𝑖
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Head loss evaluation

Materials Experimental and numerical results

Empirical equations

𝑘𝑘 = 𝜆𝜆𝑘𝑘 ⋅ Γ𝛼𝛼𝛼𝛼
1 + 𝜏𝜏 1 − 𝛽𝛽2 − 𝛽𝛽2

2

𝛽𝛽4

 Chamfer approach flow

 𝜆𝜆𝑘𝑘 = 𝜆𝜆𝑘𝑘
0(𝜃𝜃)𝛼𝛼𝜃𝜃+0.0125
𝛼𝛼𝜃𝜃+0.0125

 Γ𝛼𝛼𝛼𝛼(𝜃𝜃,𝛼𝛼𝜃𝜃) = 1 − 𝜅𝜅(𝜃𝜃,𝛼𝛼𝜃𝜃) 𝛼𝛼𝑖𝑖
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Head loss evaluation

Materials Experimental and numerical results

Empirical equations

𝑘𝑘 = 𝜆𝜆𝑘𝑘 ⋅ Γ𝛼𝛼𝛼𝛼
1 + 𝜏𝜏 1 − 𝛽𝛽2 − 𝛽𝛽2

2

𝛽𝛽4

 Rounded approach flow

 𝜆𝜆𝑘𝑘 = 0.271𝛼𝛼𝑎𝑎+0.0125
𝛼𝛼𝑎𝑎+0.0125

 Γ𝛼𝛼𝛼𝛼(𝑎𝑎) = 1 − 𝜅𝜅(𝑎𝑎) 𝛼𝛼𝑖𝑖

!!! The head loss coefficient does not 
depend on the rounded shape !!!
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Characterizing lengths

Materials Numerical results

Definition Reattachment and influence length

Endress+Hauser, The Differential Pressure Flow Measuring Principle (Orifice-Nozzle-Venturi). 

YouTube video : https://www.youtube.com/watch?v=oUd4WxjoHKY
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Reattachment length

Lr does not depend on the approach flow. Lr depends on β and αi.
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Numerical - sharp approach flow
Numerical - chamfered approach flow
Current study, 

i
 = 0.05

Current study, 
i
 = 0.1

Current study, 
i
 = 0.2

Current study, 
i
 = 0.4

Jianhua et al.(2010),  = 0.05
Jianhua et al.(2010),  = 0.1

Sharp approach flow

R2=0.83

RMSE=0.15

Chamfer approach flow

R2=0.85

RMSE=0.25
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Influence length

Lj depends on the sharp or chamfer approach flow. For the sharp approach, Lj
depends mainly on β and αi, while it depends also on θ for chamfer approach.

, 1.47 6.90 0.77j sharp il β α= + +
( ) ( )21 0.97 0.14 sin 2

, 1.47 6.90 0.77

ij

j

with

ij chamferl

λ α θ

λβ α ⋅
 
 
 

 =   
+ +

= + +
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Cavitation risk

Cavitation number

Data Incipient cavitation number 

Method Single phase numerical 

simulations (Ferrarese et al., 2015)

minu
du

p p
ppσ −= −

pmin is the minimum pressure in the 
pipe

v
i d

gu
u p

pp
pσ
−

= −

*
**
*mu

u d
i p

p
p

pσ =
−
−

Where pvg is the vapor pressure
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Cavitation risk

V=11m/s, σ=1.71

Flow
Note: V is the average velocity

No cavitation

V=13.6m/s, σ=1.26

Incipient cavitation regime

V=16.0m/s, σ=1.00

Near critical cavitation

V=17.2m/s, σ=0.92

Developing critical cavitation

Incipient cavitation number remains 
conservative in comparison with the 
critical cavitation

Yan & Thorpe (1990)
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Cavitation risk
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Cavitation risk

Application to a straight pipe (conduit)
vgu

i u d

p p
p pσ −

= −
2

2
8

u vgi
d

p kQ p
gA

σ= ⋅ + +

• Evaluate the 
maximum 
discharge for a 
given upstream 
pressure

• Evaluate the 
cavitation risk 
for a given 
orifice with a 
given flow 
characteristics
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Case study
Increase of the installed turbine discharge

Renewal of the 3rd turbine 𝑄𝑄𝑇𝑇 = 12.0 → 14.7𝑚𝑚3/𝑠𝑠

Eggen reservoir

Fah reservoir

Sera reservoir
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Case study
Increase of the installed turbine discharge

Placement of a throttle

Throttle Geometry ≠ orifice

Head losses work…

BUT no information
about the cavitation risk!

s1s2
s3

APT

DLC

t

Lower chamber
of ST

Pressure 
tunnel

idealization predicting

σi

+ 13 iterations to 
link head losses 
to a geometry
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Case study
Increase of the installed turbine discharge
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Conclusions

• Based on systematic tests, different orifice geometries were characterized 
and help to design new surge tank orifices. 
 Head loss evaluation with empirical relations and a online catalog
 Undisturbed flow conditions in order to use the empirical relations
 Particular definition of incipient cavitation numbers which characterize 
each orifice geometry and allow comparing their behavior regarding 
cavitation. 

Published in the next Wasser Energie Luft (3/2018)

• New method is suggested in order to  evaluate the risk of cavitation at 
throttles of surge tanks during mass oscillations  Give new information 
about the throttle behaviors.

+ Exhaustive review of the throttle in the surge tank of Gondo in JHE.
Adam, N. J., De Cesare, G., Nicolet, C., Billeter, P., Angermayr, A., Valluy, B. & Schleiss, 
A. (2018). Design of a Throttled Surge Tank for Refurbishment by Increase of Installed 
Capacity at a High-Head Power Plant. Journal of Hydraulic Engineering 144(2).
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