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Introduction

Swiss electricity generation (2017)

h 2 470 GWh
2852GW - m Hydro 59.6 % (run-of-river 25.9 % and

storage 33.7%)
m Nuclear 31.7 %

19 499 GWh 36 666 GWh Thermal plant 4.6 %

= Small hydro, wind, photovoltaic, etc. 4 %

Source: BFE, Statistique globale suisse de I'énergie 217

Energy strategy 2050 For hydroelectricity:
36 666 GWh/y. (now)

Energy efficiency | Building new plants
*Phase out nuclear energy 37 400 GWh/y. (2035) } AND

*Reduction of CO, emission Refurbishing existing

v plants
38 600 GWh/y. (2050)
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Graph1

		Hydro 59.6 % (run-of-river 25.9 % and storage 33.7%)

		Nuclear 31.7 %

		Thermal plant 4.6 %
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Tabelle1

				Production électrique par type de production

		Hydro 59.6 % (run-of-river 25.9 % and storage 33.7%)		36666

		Nuclear 31.7 %		19499

		Thermal plant 4.6 %		2852

		Small hydro, wind, photovoltaic, etc. 4 %		2470

				Ziehen Sie zum Ändern der Größe des Diagrammdatenbereichs die untere rechte Ecke des Bereichs.






Introduction
Refurbishment

(Schleiss, 2002 ;
Chaudry, 1987)

 Reduce, i.e. eliminate, the water
hammer in the pressure tunnel

A ~ Pressure tumn 1t , e Damp of fche accelergtlon and
W — ——— i ) deceleration of flow in the pressure
AN — 2 tunnel

Powerhouse ¢ Improve the regulation of turbines

_ Main function principle and
Tubine Tailwater  CcONnsequence
« Mass oscillation

- Limit oscillations with extreme
upsurge and downsurge

(Schleiss, 2002)

Decision of a refurbishment: Heightening of dam (more head) or increase of
installed generation capacity (more MW)

Usually, a refurbishment of the hydraulic machinery induces an increase of
discharge. This increase leads to increase (resp. decrease) maximum (resp.
minimum) water level in the surge tank.
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Introduction
Efficient solution

4"\“—\\__ q
4 AN TN _
y; | o R TR /L\lr tunnel
. _\‘ Tir e v ATAL ey :=
Reservoir A L had A
- ' 2\ Surge tank
S __Pressure tunne min. §¥ \
'\ )
Intake A,
1 7
2)
Pressure "\% Powerhouse
shaft H‘f
Rl [ ‘- A
WA
Valve ' U

(Schleiss, 2002) .
Turbine Tailwater

 For a reasonable increase of discharge (power capacity), the placement of a
throttle is often an appropriate and economical solution

 This small modification influences the transient behavior of the whole
waterway system.

« Throttles in surge tank are critical structural elements from which depend
the good functioning of the whole power plant.
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Introduction
Throttled surge tank

For a closure: Throttled surge tank

- The excess discharge flowing in the
pressure tunnel goes in the surge tank

- The pressure (head) under the ST is
equal to the water level in the ST + the
head losses produced by the orifice

Different types of throttle

Orifice Racks / Bar screen

Vortex throttle

FMHL + (Hachem et al., 2013) Gondo (Adam et al., 2018)

Upper chamber

Intermediate
shaft ower chamber

(Steyrer, 1999)
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Introduction
Orifice

Rock o .
B _3_*.___1 _;_Hi S_JPE_LJ__ L L ._u__, J_

Backfill Concrete -

Steel-lined tunnel (if existing) ' Thickness parameter &

Q,p,p U g Ksi Inner thickness
- > d

parameter
l Chamfer angle

T rﬁﬂ—ﬂ D T

"
N 2
AH =k
29
Comments

e k and v are related to a reference area.

« Kk is the head loss coefficient containing all boundary conditions (i.e. the
upstream and downstream conditions), recirculation, flow contraction or

expansion, etc.
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Modeling ALPIQ

Two different approaches: Experimental and numerical

Head loss evaluation e @

Influence length e

Reattachment length

Cavitation risk

e Steady discharge @ Transient discharge
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Modeling
Experimental facility

.

Laboratory supply /
(D=0.150m, steel) |’ /
/
— - —
_m_ '1 E _lX
Ilu
Main pipe (D=0.216m, PVC) | Fldyv straightener
= I0m ' "

T

Y
| B
|1

24 Pressure control section

E Valves
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Modeling ALPIQ

Numerical geometry

Numerical model Ansys CFX Version 17.1 or Version 15.0

Validation experimental results

Goal
e Extend to other geometries
 More detail inside view
« Reattachment length
« Cavitation risk

« Hexahedrons

e ca. 1.2 million elements
Turbulence model

e SST model
Boundary conditions

* Inlet: Velocity

e Qutlet: Pressure
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Head loss evaluation

Materials Experimental and numerical results

Empirical equations

= Sharp approach flow
n Ak =1
[,; =1—0.947 q;

(1+0yT-F2-p2)

k:Ak'Fai 4
40 I P ‘
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10 |

0 0.1 0.2 0.3 0.4

Inner thickness ratio, a; [-]
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Head loss evaluation

Materials Experimental and numerical results

Empirical equations

2
k=i T (1 +T\/1;4,32 —,32)

= Chamfer approach flow _

2%(8)ag+0.0125
| Ak ol
ap+0.0125

u Fai(é?,ag) = 1—K(9,C¥9) a; ||
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Head loss evaluation

Materials Experimental and numerical results

Empirical equations

2
k=i T (1 +T\/1;4,32 —,32)

= Rounded approach flow

0.271a,+0.0125
| Ak —
;+0.0125

11l The head loss coefficient does not
depend on the rounded shape !!!

* [pi(a) =1-k(a) a;
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Characterizing lengths

Materials Numerical results

Definition Reattachment and influence length
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Reattachment length

4
T T T T T T
as . Sharp approach flow
' R2=0.83 )
0
3] RMSE=0.15 |
Chamfer approach flow
25 L R2=0.85 |
RMSE=0.25
j_ 2 a Numerical - sharp approach flow
g Numerical - chamfered approach flow
1.5 || currentstudy, o, =0.05
I
~ Current study, o 01
14 ____ Current study, Q =0.2
o5 | Current study, ai =04
—Jianhua et al.(2010), o =0.05
____Jianhua et al.(2010), a” 0.1
0 I I
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
BH
|, :(—5.4605i +14.1)-]/0 for f>0.5

Iy =(3.95¢; +2.32] yo +(~2.35¢; +2.95) for f<0.5

L, does not depend on the approach flow. L.depends on 8 and a;
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ALPIQ

Influence length

| =1.47+6.904+0.77c, | 1.
| <harp =1-47+6.903+0.77c; J,chamfer ( d a'J J
LSNP with 2; -|1+(0.97¢; +0.14]sin? (26)|

L; depends on the sharp or chamfer approach flow. For the sharp approach, L;
depends mainly on B and a,, while it depends also on 6 for chamfer approach.
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Cavitation risk

Cavitation number
pu B pmin
pu o pd

Pmin IS the minimum pressure in the

O =

pipe

Data Incipient cavitation number

O. = Pu~

| pu _pd
Where p,, is the vapor pressure
Method Single phase numerical
simulations (Ferrarese et al., 2015)
- Py —Pm
Pu— Py
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Cavitation risk ALPIQ

Yan & Thorpe (1990)

Incipient cavitation number remains

conservative in comparison with the
critical cavitation
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Cavitation risk
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0; =(1+2.022+2.50015 .2

ol

ai=0.1, 0= 45

with A . =1+ 4.15sin2(29)
ol

L—»

Conservative hypothesis, envelope curve
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Cavitation risk

Application to a straight pipe (conduit)

| J
| |

d
incipient cavitation
I
RN NN No_cavitation_rigk
ON =05 1
= 0.45

£ 2 LITT 08 T AN\ Risk_of cavitat
— 5204
o - 0.6  Evaluate the

0 p — I maximum

-0.05 0 0.05 discharge for a

vena-contracta cavitation given UpStream
pressure
N AN T / /

4 \\ \\ \\ 4 //
= N N / 27
. SN N e // 7 e Evaluate the
T A TN e cavitation risk
E 2L R NN // PR - :
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~ 7 ~ e .
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0 T E e given flow

-0.05 0 0.05
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Case study
Increase of the installed turbine discharge

30km

ZzZ—>»

;Uﬂch

Lausanne

/ Gondoe .
Geneva Eggen reservoir

Renewal of the 3rd turbine Q; = 12.0 - 14.7m3/s

Fah reservoir

Sera reservoir
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Case study
Increase of the installed turbine discharge

Placement of a throttle

+ 13 iterations to
link head losses
to a geometry

Head losses work...

BUT no information
about the cavitation risk!

Throttle Geometry # orifice
Lower chamber

of ST
/

idealization predicting

. m) o
Pressure

tunnel
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Case study
Increase of the installed turbine discharge

1300 N
W
S .
£ 1290 | Maximum water levql | I S |
'_
n
1280 | ]
T 1270 | |
X
c
g8
S
S 1260 | 1 L
2]
§ Elevation of the throttle
R e e S S S 5 i e
c —— Limit incipient cavitation
Q
5 ——— Mass oscillations for emergency shutdown
E 1240 T T T L 1 1
= -10 -5 0 5 10 0 1000 2000 3000 4000
Discharge flowing into/out the surge tank, Q<r [M3/s] Time, t [s]
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Conclusions

 Based on systematic tests, different orifice geometries were characterized
and help to design new surge tank orifices.

- Head loss evaluation with empirical relations and a online catalog
- Undisturbed flow conditions in order to use the empirical relations

- Particular definition of incipient cavitation numbers which characterize
each orifice geometry and allow comparing their behavior regarding
cavitation.

Published in the next Wasser Energie Luft (372018)

« New method is suggested in order to evaluate the risk of cavitation at
throttles of surge tanks during mass oscillations - Give new information
about the throttle behaviors.

+ Exhaustive review of the throttle in the surge tank of Gondo in JHE.

Adam, N. J., De Cesare, G., Nicolet, C., Billeter, P., Angermayr, A., Valluy, B. & Schleiss,
A. (2018). Design of a Throttled Surge Tank for Refurbishment by Increase of Installed
Capacity at a High-Head Power Plant. Journal of Hydraulic Engineering 144(2).
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