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Introduction vttty genrston i Shares (4
«  Expansion of decentralized renewable electricity generation (DREG) is the key ) i :;.,m
requirement for climate protection, energy security and economic growth [1]. EE o —: s U0
«  To reach net-zero emissions by 2050 in the EU, the share of electricity supply from £ e e .
renewables has to increase from 21% (2010) to 57% (2050) [2] (Fig. 1). LEL L LSS PP P —
» Previous research showed that such clean energy transition risks creating new patterns % eceecticiy generation sovries Shares (%) —
of spatially uneven regional development, e.g. clustering of renewable energy oo Pl o
investments to few locations and regionally uneven impacts on emissions, electricity 0 e ? e Y
generation costs, health and employment [3, 4, 5]. 5 Lo o, w
» The appropriate spatial allocation of renewable electricity generation and potentially ;, FEIEEEF PP | e ———

emerging inequities is a new and recently noticed policy challenge [4, 6, 7].
. Figure 1. Share (%) of DREG net electricity generation by fuel type and by plant type. This
Research questions figure is reproduced from [2]
1.  What are the distributional impacts (i.e. additionally installed renewable capacity, storage, transmission infrastructure, and its impact on electricity
generation cost) for reaching net-zero emissions in Europe at NUTS-3 level by 20507
2. How do these distributional impacts vary when increasing levels of regional equity (i.e. equitable spatial allocation of DREG) compared to the cost-
efficient spatial allocation?
3. How do NUTS-3 regions in Europe (today and in future scenarios) compare in terms of regional equity of DREG spatial allocation?

Input data

Methods and materials

. . . . . Fuel costs & Electricity Generator &
. u on: eu | - I utl 1g. . availability demand storage data
Study region: Europe at high NUTS-3 spatial resolution (Fig. 2 pp—
. . ! L
*  We setup the model by hard-linking the PyEXPANSE and w Longtem capaciy ganson oleserve § DREG resource § Transmision
M requirements potentials system data

PyPSA models (Fig. 3):

+  PyEXPANSE to assess long-term capacity expansion
requirements by generating equitable scenarios with
Modeling to Generate Alternatives (MGA) method [4,8].

+ PyPSA|[9] to assess short-term economic dispatch,
storage and transmission requirements and costs.

Generation § Spatial DREG § Total system
portfolio distribution costs

Regional Storage Transmission
Results equity score § requirements § requirements

Figure 3. Overview of the modelling methodology

*  Each scenario is compared in terms of distributional impacts for @ Types of energy Justice Legend
multiple levels of regional equity, which we measure with an ey ea 88

! N Across time
|
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adapted concept of the Gini coefficient [4,10]. Figure 2. Study rgions (Switzeriand i re0)
*  We develop an energy justice framework in which we embed our equity analysis [4] (Fig. 4).
*  We include multiple equity or “effort-sharing” principles to assess the equitable spatial
allocation of renewable electricity generation as proposed by Héhne et al. [11].
« Equality: e.g. equal per capita renewable capacity allocation.
+  Cost-efficiency: e.g. least-cost allocation by total system cost (generation, storage & =~ @y
transmission).
« Capability: e.g. allocation of renewable capacity weighted by GDP.
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Acrossspace .~
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(@ Equity principles

« Responsibility: e.g. allocation of renewable capacity weighted by historic emissions. Figure 4. Energy justice framework. This figure is reproduced from [4]
. . 3000
Preliminary results for one country (Switzerland) Load distribution
A . . 7000
* Least-cost DREG allocation leads to highest electricity storage 750
. X . 6000 [ Electricity generation
and net import costs; but still has low total system costs (Fig. 5). . B et v eeorna a2
. . . . s attery storage 47.00
«  Most regionally equitable scenarios lead to high total system g B patenystorese o 3
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« There is a significant trade-off between equity, levelized cost of @ Least-cost DREG allocation 4625
. . B 2000
electricity (LCOE) and total system cost found in Switzerland: w000
- . - . . 1575
100% increase in regional equity when allocating DREG leads to o . 3 7 5 3 %
o) 1 o) 1: . . -
20% hlgher LCOE and 35% hlgher total SyStem costs (Flg 6) Figure 5. Boxplot of total system cost components (annualized) ~Figure 7. Hourly load distribution with ENTSO-E
. EXisting transmission |ine Capacity iS sufﬁcient to aChieVe SWiSS for least-cost DREG allocation and 200 MGA scenarios grid infrastructure extracted with GridKit model [12]
2035 DREG capacity targets (n-1 security approximation) (Fig. 5).  ***T . ot vaseor N so0e Generator type
011001 o Totalsystem costtrade-off o  S4E W £ Savings + Efficiency
« Pumped hydro and battery storage plants are able to balance e i 700 L st ncersion
high solar PV power supply and demand (Fig. 7 & 8). . jon0E o I ooty sonass
Next steps H ™
Z as00 I
« Expand analysis to further 4 countries: France, Germany, 8 . g
: . ; % 0.0075 ; e o
Netherlands and Austria, and later to all regions from Fig. 2. Jooso | yorge ams
»  Assess distributional trade-offs of total system cost for varying 00925 M —
degrees of regional equity for these regions. 3o odos otso odrs 0300 o35 ode ™ omosm o am sm o em o am o oo
. . . . . . . . Regional equity " . . jan
Assess distributional trade-off for a range of equity principles: Figure 6. Equity rade-off between LOOE and otal systam o200 0L e evpanaion of
equality, cost-efficiency, responsibility and capability (Fig. 4). costs for 200 MGA scenarios Jeast-cost DREG allocation scenario
[6] Balta-Ozkan N, Watson T, Mocca E. Spatially uneven development and low carbon transitions: insights from urban and regional planning.
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Introduction

* Model-based scenarios have become the key method to explore
uncertainties and decision alternatives in the electricity supply
transition of many countries [1-3].

* In Switzerland, such scenarios have been developed by many
different organisations, including public administration (e.g. Swiss
Federal Office of Energy [4]), research institutes (e.g. Paul Scherrer
Institute [5]), universities (e.g. ETH Zurich [6]), and non-
governmental organizations (e.g. Cleantech [7]).

+  Combining scenarios in multi-organization, multi-model scenario
ensembles increases the diversity of considered uncertainties [3].

* However, it is unclear whether such ensembles align with the
perspectives of stakeholders, including the wider public [8-9].

Methods and Materials
*  We collected model-based scenarios by reviewing published scenario

studies that provided electricity supply results for 2035 (Table 1).

*  We elicited preferred scenarios using the interactive web-tool

Riskmeter (Figure 1) from three samples of participants in Switzerland:

1. non-experts (“citizens”, N=61)

2. non-experts that received balanced information and participated in
informational workshops about the electricity supply topic prior to
giving their preferred scenarios (“informed citizens”, N=46)

3. participants that were mainly working in or studying about energy
topics in Switzerland (“energy experts”, N=60)

*  We compared model-based and preferred scenarios in terms of
technology-specific electricity supply and the whole supply system.

Uncertainties explored | Electricity supply excl. hydro (TWhiyear)
Cost- | Scenario .
Pub. | o eation | Study | OPtimiza | diversity R:l';'fe‘;r"’ Related to "
year | 09 Y| tion | method | "CECIE | domestic
used? | used? renewable and geothermal
fuels or
. sources h
imports o tocnologies
40
2019 PSI 11 v
2018 | EPFL-LEURE| [12] v v
VSE 3] v
ETHZ-TD | [2) v
2017 | ETHZ - FEN &
bs! [14] v v v
ETHZ-CP | [15] v v
PSI [16] v v v
2016
5] [1n v v
Econability &
PSI&EPFL- | [18] v v
20151 guRe
ETHZ-CP_| [19] v
2014 PSI [20] v v
PSI 121] v v
2013 [_Cleantech _|_[7] 7
[22] v
VSE 23] v v
PSI 8] v v
2012
SFOE “ v
2011 | ETHZ-ESC | (6

Table 1. Scenario development detal!s for all studies included in the review. Acronyms used: PSI (Paul Scherrer
Institute), LEURE (L y of and Urban i VSE (Verband Schweizerischer Elektrizitats-
unternehmen), FEN (Research Center for Energy Networks) CP (Climate Policy group), TD (Transdisciplinarity lab),

SFOE (Swiss Federal Office of Energy), ESC (Energy Science Center).

Aim and research questions

We compare a multi-organization, multi-model ensemble of 80 Swiss electricity

supply scenarios for 2035 from 18 studies between 2011-2018 with the

preferred scenarios from three samples of stakeholders: citizens (N=61),

informed citizens (N=46), and energy experts (N=60). Our study aims to

answer the following questions:

1. How does an ensemble of multi-organization, multi-model electricity

scenarios compare to the preferred scenarios from citizens, informed

citizens, and energy experts?

What are the key factors of scenario development that may explain the

alignment or misalignment between the model-based scenarios and the

preferred scenarios?

3. Does the difference in energy knowledge level of the three samples result
in differences in preferred scenarios?

g

Figure 1. The interactive web-tool Riskmeter for building Swiss electricity supply scenarios for 2035 [10]

Results

*  Most informed citizens and experts preferred an almost 100% domestic
renewable electricity supply in Switzerland in 2035 (Figure 2).

*  Most model-based scenarios relied significantly more on fossil fuel-based
generation and net electricity imports (Figure 2).

* Possible reasons for this misalignment are the lack of broad stakeholder
participation in scenario development, the wide use of cost-optimization
models that are known to underrepresent renewable electricity [8], and
the limited diversity due to a focus on specific uncertainties (Table 1).

* The energy knowledge level affected preferred scenarios. Citizens
preferred statistically significantly lower supply from domestic renewable
electricity than informed citizens and experts (Figure 2).
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Figure 2. Comparison of annual electricity supply for 2035 between model-based and preferred
scenarios. The boxplots depict median, 25th and 75th quartiles, and 1.5 interquartile range.

Implications

«  For scenario developers and users: even multi-model scenario ensembles
can focus on alternatives that are not preferred by stakeholders; diverse
stakeholder and public perspectives can enrich scenarios.

*  For the electricity supply transition in Switzerland: more scenarios with

large-scale deployment of renewable electricity before 2035 should be
modelled in the future.
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