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DuoTurbo : Pilot Plant Commissioning and Monitoring
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Pilot plant installation Monitoring results

The first DuoTurbo product has been installed in the drinking water supply
network of Saviése, VS. Various hydraulic, mechanical and electrical
parameters are monitored to study the long term behaviour of the
DuoTurbo pilot plant. The installation was commissioned on 15 May

The monitoring of the first 12 weeks of operation (15™ May to 7t August
2019) shows a satisfying behaviour in terms of stability, operating
regulation, efficiency and vibration. No significant drifts of the efficiency or
vibration levels have been observed at this state.
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Prediction of unstable full load conditions in a Francis turbine prototype
J. Gomes Pereira Jr., E. Vagnoni, A. Favrel, C. Landry, S. Alligné, C. Nicolet, F. Avellan

Introduction Reduced scale model measurements

Francis turbines operating in full load conditions feature an o
axisymmetric vortex rotating in the opposite direction of the turbine
runner. This vortex rope may enter in an unstable self-exciting
process, leading to large pressure pulsations and oscillations in the ]
generating unit power output. In this research work, prototype on-site =
and reduced scale model test results are presented where the turbine g
changes from a stable to an unstable full load condition due to an

increase in discharge. Measurements are compared in the frequency ‘ ‘
and time domain, where similarities are evidenced between model @“\é %\éf/
and prototype. Using the measurements on the reduced scale model Jféd,;MJ

and 1-D numerical models of both the reduced scale model and the
turbine prototype, eigenvalue calculations are performed to predict the
discharge value of transition from stable to unstable conditions. The
transition point on the prototype is then predicted with a small
deviation. Transient simulations in the time domain are performed
replicating the self-exciting behavior of the unstable full load condition
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Conclusions and future works

The occurrence of unstable full load operating conditions on the
prototype was predicted by reduced scale model measurements and
eigenvalue calculations on this specific test case. Further
measurements for different test cases are expected to further validate
the new methodology.
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Motivation

The RENOVHydro project is dedicated to the renovation of an
existing hydroelectric power plant with a systematic assessment of a
high number of civil and electromechanical potential
modifications. In order to automatically assess the primary control
potential of the renovated hydroelectric power plant, it is necessary to
have a simple and robust methodology to deduce the parameters of
a PID controller.

1. Application to 40 different Francis turbine

* 40 Francis turbines are selected with head from 30 to 500 mWC.

*  Mechanical power is fixed arbitrary to 50MW or 300MW.

+  The Francis turbine is connected to electrical grid (f,,y = 50 Hz)

*  The layout of the generic hydraulic power plant are defined by the
following rules.
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Fig. Dimensioning rules defining the layout of the hydraulic power plant
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* The dimensioning of the turbine (spiral
casing, runner and draft tube) are T, = QZ
derived from statistical laws.

* A realistic performance hill chart are T
obtained with the new SIMSEN library.
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2. Block diagram of the PID controller

Low-pass filter
1
1+ 7,5

The control system is a PID
turbine governor with both
speed and power control
loops combined with the
permanent droop Bs.

Low-pass filter
The PID controller is in Fig. SIMSEN model of the control system
series, where K is the
proportional gain, Ti is the
integral time constant and Td
is the derivative time

constant.

Fig. Block diagram of the PID controller in
SIMSEN software

3. Primary control capability defined by Swissgrid

For each Francis turbine, the test defined by Swissgrid for primary
control capability is based on a frequency linear variation of 200
mHz in 10 seconds. The output power variation must be delivered
within 30 s and remain between minimum and maximum threshold.
The permanent droop Bs is fixed to 4%, leading to AP/Pn = 10%.
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4. Methods to define the PID controller parameters

A. Ziegler-Nichols Method

Limit of stability Kc and Tc PRI ol (12
controller
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Fig. Time response to the frequency variation of 200 mHz (Pm = 50MW)
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Fig. Time response to the frequency variation of 200 mHz (Pm = 50MW)

5. Conclusion

* The Ziegler-Nichols method is robust and can be applied
regardless of the mechanical power of the Francis turbine.

» The time constant method is based on the geometric quantities of

the layout and avoids a search for the limit of stability. A correction

constant must be applied depending on the power of the hydraulic

turbine (Kagomw = 0.6"Ksomw)
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Numerical modelling of fish guidance structures
Claudia Leuch, VAW, ETH Ziirich

Introduction Bar rack simulation

Fish guidance structures (FGS) are implemented at hydropower 2D Set-Up

plants to reduce fish mortality during downstream migration. Their Loss coefficient (§-gs) and flow distribution downstream of the rack of the
design is crucial for their guidance efficiency and the losses caused to numerical model were determined for two approach velocities. They were
the power production. The objective of this thesis was to set up and compared to empirical data for the angled and the curved bar to validate
test a numerical model. The model was then used to analyse FGS the model. The model proved to depict both parameters well. The
configurations. deviation of the loss coefficient was 12 % for the angled bar and 7 % for

the curved bar set-up (Fig. 4).
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Fish Guidance Structures

Vertical FGS consist of a bar rack implemented at an angle to the
flow. The bars create hydraulic cues, which trigger an evasive I I
behavior of the fish. Traditionally, rectangular, angled bars are used. 00 angledBar orvedBar P B
However, they cause high hydraulic losses and an asymmetric

o

Loss coefficient [-]

mmodel memp. formula ©measurement mmodel @emp.formula @ measurement

admission flow to the turbines. Curved bars are currently tested at . ) . .
VAW, ETH, as an alternative design to mitigate these issues. Two

additional bar shapes were also analyzed numerically (Fig. 1). Fig. 4: Comparison of loss coefficients of the numerical model, empirical
formula and physical measurement for the different bar shapes and two different

approach flow velocities
\ \ Both additionally tested bar shapes performed much better than the
original angled bar and indicated to be comparable alternative designs to

N

v
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the curved bar layout.

Fig. 1: Analyzed bar sh : led bar, d bar, slim b d fish b: . . .
ig nalyzed bar shapes: angled bar, curved bar, slim bar and fish bar The numerical simulation was used

to analyze the flow field in close
vicinity of the bars where physical
measurements were not possible.
Regions of flow detachment or high
shear stress can thus be detected

be correlated to observed fish ™ w

Numerical modelling

Numerical simulations can be used as an alternative to expensive and
laborious physical experiments. Turbulent flow is often modelled using
Reynolds averaging on the flow equations to reduce computational costs.
As this leads to an under-determined set of equations, a turbulence model
is needed as a closure relation (Fig 2). Several different models exist, and
it is difficult to know a priori which one is suitable for a given problem.

(Fig. 5), and flow features might then

behavior. | - ro—
1 1.5 2
Mathematical Discretisation & u/uo
Reynolds Turbulence i .
et Aveyraging e ”5‘5?5322' Fig. 5: Flow field around the bars of the
(Navier-Stokes) curved bar rack set-up. The velocity U is

normalised by the approach velocity U,
Fig. 2: Schematic approach of the numercial modelling of turbulent flow 3D Set-Up

To assess the flow variation in vertical direction, the model was extended to
a 3D setting. Near the bottom, the flow was influenced by wall friction. In the

. water column, however, there was only small variation of the vertical flow
Turbulence model evaluation field.

Five common turbulence models (standard k-¢, realizable k-&, RNG* k-
&, standard k-w and k-w SST**) were analysed for their applicability on

the FGS set-up. In a preliminary assessment, the performance of the Conclusions
turbulence models was tested on standard scenarios (flow over flat
plate, flow around a cylinder). Grid convergence was studied on a The choice of a fitting turbulence model is a crucial part of numerical flow
single bar and a 10-bar set-up for the drag coefficient and the overall simulations. It could be shown that the k-w SST turbulence model was
pressure difference. The k-¢ models could not capture well the suitable for the numerical simulation of the bar rack configuration. Both flow
boundary layer behaviour (Fig. 3). The k-w SST model showed the field and loss coefficient could be reproduced well. A 2D model seems to be
best performance and was chosen for the FGS model set-up. appropriate for a simple bar rack set-up. Further analysis should be done
30 on the use of 3D models for simulations of FGS with additional structures
viscous logarithmic log law R . .
sublayer fayer ur=ye such as overlays, which introduce stronger vertical flow components.
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