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- Methods
Introduction Matrix porosity and permeability are locally high

In the Swiss Molasse Basin (SMB; Fig. 1), deep (<25% and <100 mD, respectively), in part due to | The reconstruction of the genesis and
saline aquifers are one of the options under beds rich in cm-dm scale cavities left by the | evolution of the anhydrite-dissolution
investigation for geothermal energy production and dissolution of eogenetic anhydrite nodules (Fig. 2). cavities Is based on drill-core samples
for geological storage of gas. Particularly the Middle However, the spatial distribution of anhydrite- |from various boreholes across the
Triassic dolomites within the Upper Muschelkalk dissolution pores is not well known as the basin is | Swiss Molasse Basin and it includes:

(Trigonodus Dolomit) show encouraging aquifer  underexplored. The present study reconstructs the

properties along the northern margln of the SMB. genesis and evolution of these pores, thus | ® Standard petrographic investigations
Joner Muschalkalk aquifer providing conceptual understanding to support
it ks s Y ongoing exploration. * Analyses of stable and radiogenic
@1 4 - stBae e T isotopes (i.e. 6%H, 6180, and 87Sr/56Sr)
o N 5 w dﬁ: c_)f_ rock-forming (do_lom|te) and pore-
5 S e filing (quartz, calcite and kaolinite)
Fig. 1: CO, storage potential minerals

of the Upper Muschelkalk
aquifer in the Swiss Molasse
Basin within the technically
favoured depth range for CO,
® Wells through Upper Muschelkalk storage (800-2500 m). The

* Fluid Inclusion studies of pore-filling
guartz and calcite
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Potential for CO, sequestration 120 °C isotherm (red Iine)
e L marks the _minimal temp-
eiebe e erature requwed_ t_o produce Fig. 2: Drill-core section of the Trigonodus Dolomit at the BEN borehole. The cm-dm scale
geothermal electricity. cavities originate from the dissolution of eogenetic anhydrite nodules.
Petrography Fluid inclusion studies Isotope analyses
Some of the anhydrite-dissolution cavities have | Primary saline water and methane inclusions Pore- and fracture-filling calcite in the Upper
been affected by two events of mineral| were trapped simultaneously in both quartz Muschelkalk yield high 87Sr/88Sr ratios relative to

precipitation: (1) precipitation of quartz during| and younger calcite. Homogenisation the dolomite matrix. These high values overlap
anhydrite dissolution; (2) a second, younger event | temperatures are therefore equivalent to with the 87Sr/8°Sr signatures of basement water

In which calcite and kaolinite co-precipitated. trapping temperatures (Fig. 4a). and calcite fracture-fillings.
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Isotope analyses Discussion
Stable and radiogenic isotopes show that the original | ¢ Fluid inclusion and isotope evidenCe | Nw  Biack Forest Highlands SE
hypersaline porewater of the Muschelkalk was diluted shqws that anhydr_ite was di_ssol\{ed — e - NE-Swics Molasse Basin
by infiltration of meteoric water containing radiogenic by influx of meteoric water with high .\\ . £ P
Sr. This water overlaps with the 3'30-3%H of basement 87Sr/8°Sr ratios. \‘
waters . . 4 MI.
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kaolinite. b.c) Fluid inclusion salinities in Anhydrite-dissolution porosity in the Muschelkalk was caused by the incursion of
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outlined in the next section. spatially restricted to the vicinity of deep-seated tectonic structures, which hydraulically
o P T connect the crystalline basement and the Muschelkalk. This finding should aid in focussing
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\ geothermal and gas-storage exploration in the Swiss Molasse Basin. /
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