Supply of electricity in central Europe: current situation and forecast

DRAFT

Lyubov Schulz, Spezialist Marktprodukte & Analysen Engelberg, 18th October 2017

- 1. Current market challenges in power sector
- 2. Modelling basics
- 3. Scenarios in Mid-term Adequacy Forecast (MAF) 2017
- 4. Adequacy in Europe in 2020 and 2025
- 5. Questions

Electricity supply in Europe is in transformation

Current market situation in Europe is very challenging:

Low electricity prices as a result of:

- » high share of susidized renewable generation, apd
- » overcapacity due to low demand since the financial crisis 2008

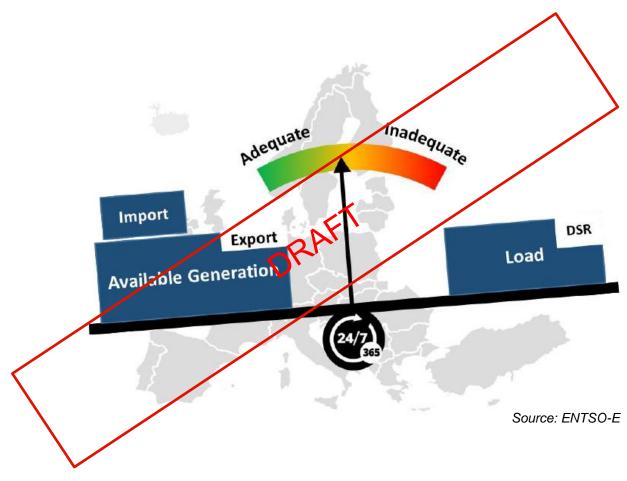
... endanger investments in existing and planned wer plants

BUT increasing volatility of generation requires thermal generation as a backup!

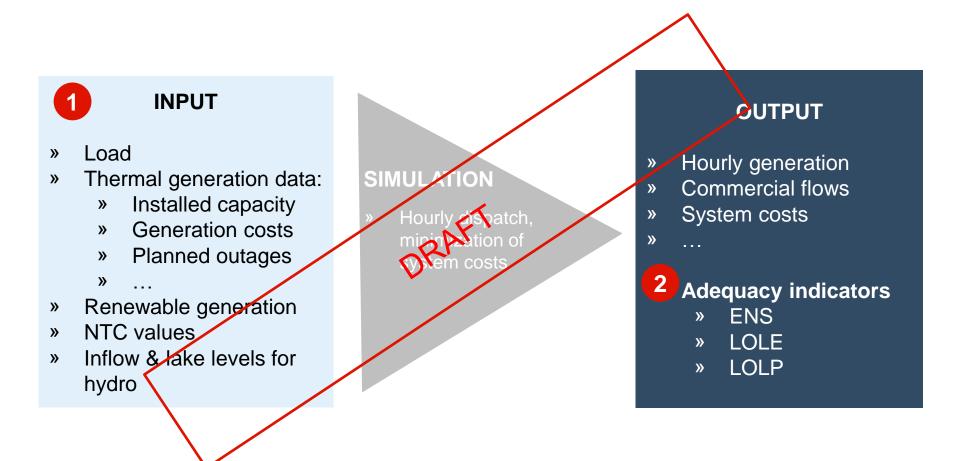
► How can electricity demand be covered in the future?

Agenda

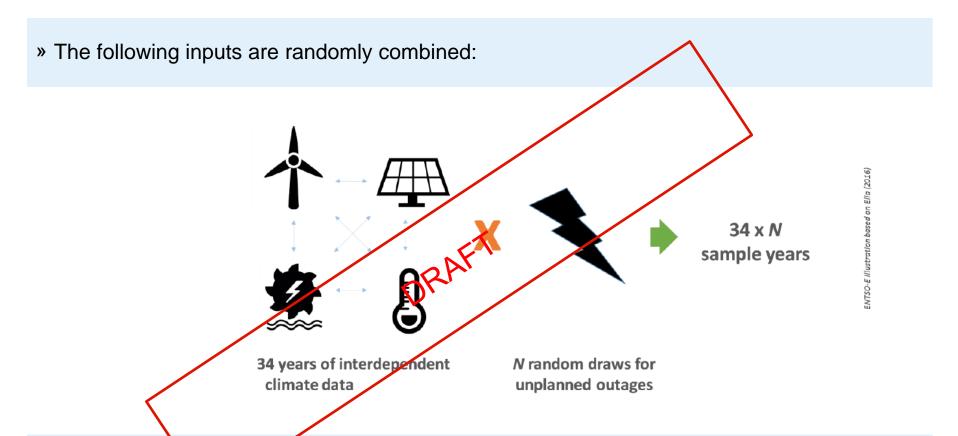
1. Current market challenges in power sector



- 3. Scenarios in Mid-term Adequacy Forecast (MAF) 2017
- 4. Adequacy in Europe in 2020 and 2025
- 5. Questions



Resource adequacy: balance between net available generation and net load

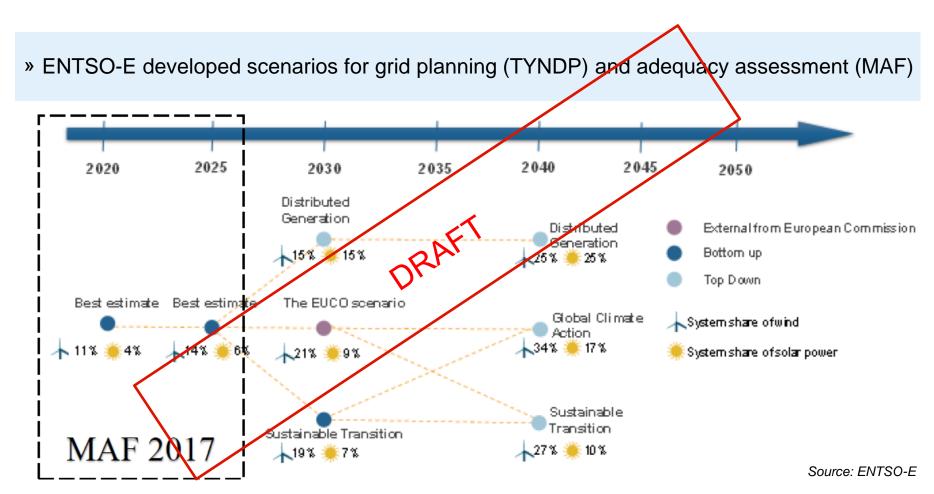


Input and output data of the market modelling

1 For adequacy analysis multiple simulations are necessary


» This process allows to consider extreme conditions, such as a cold spell and a nuclear power plant outage

2 Adequacy indicators


- » Energy Not Supplied (ENS): the average value of ENS found among all the situations (MWh)
- » Loss of Load Expectation (LOLE): the number of hours in a given period (year) in which the load cannot be covered (h)
- » Loss of Load Probability (LOLP): is the probability that the load will exceed the available generation at a given time (%)
- » Interpretation of the ENS distribution:
 - » Average: the average value of ENS found in all the simulationss
 - » Median (P50): in the half of the simulations the indicator ist smaller/larger
 - "1-in 20 years" (P95): in 95% of all simulations the indicator is smaller, and in 5% larger

- 1. Current market challenges in power sector
- 2. Modelling basics
- 3. Scenarios in Mid-term Adequacy Forecast (MAF) 2017
- 4. Adequacy in Europe in 2020 and 2025
- 5. Questions

Adequacy assessment is performed for the years 2020 and 2025

The share of thermal generation in Europe decreases to appr. one third in 2025

» Scenario characteristics:

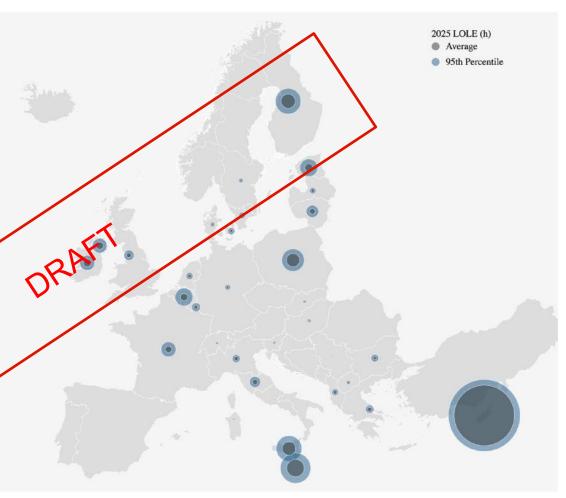
- » Renewable share of demand: 41% - 45 %
- » EU28 percentage reduction of CO₂ emissions for the power sector: ca. 60 %
- » Average marginal price:38 €/MWh 66 €/MWh
- » Additional scenario parameters are:
 - » Demand growth
 - » Demand-Side Response
 - » Balancing Reserves
 - » Exchanges with non ENTSO-E countries

Generation capacity in the ENTSO-E Perimeter

		2020		2025	
		GW	%	GW	%
Thermal		489.2	40.8%	446.9	35.1%
	Nuclear	120.7		100.5	
	Hard Coal	91.4		74.1	
	Lignite	80.2		58.3	
	Gas	203.5		204.7	
	Light Oil	7.9		6.1	
all'	Heavy Oil	3.4		2.4	
RAFI	Oil Shale	2.1		0.8	
Wind Onshore		183.8	15.3%	220.0	17.3%
Wind Offshore		24.4	2.0%	44.6	3.5%
Solar PV		138.5	11.6%	189.6	14.9%
Solar Thermal		2.6	0.2%	2.8	0.2%
Hydro	_	265.6	22.2%	271.8	21.3%
Other RES		39.0	3.3%	41.3	3.2%
Other Non-					
RES		55.5	4.6%	56.7	4.5%
TOTAL		1198.7	100.00%	1273.7	100.00%
				_	

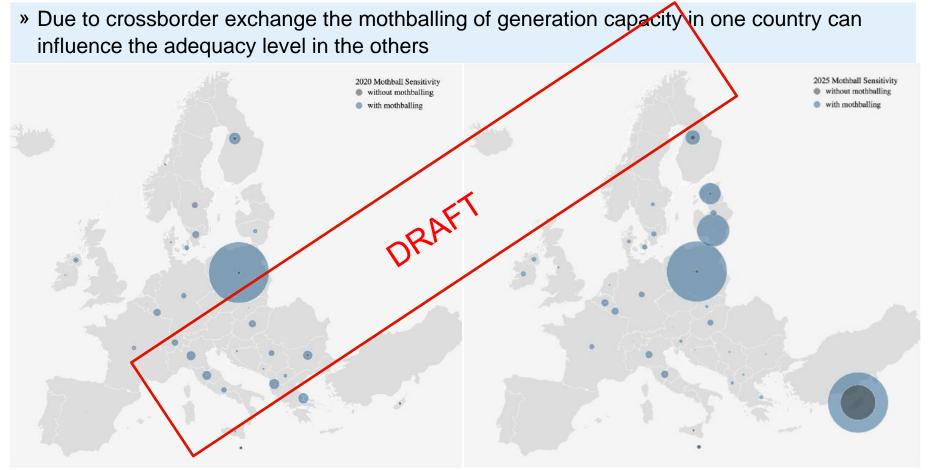
- 1. Current market challenges in power sector
- 2. Modelling basics
- 3. Scenarios in Mid-term Adequacy Forecast (MAF) 2017
- 4. Adequacy in Europe in 2020 and 2025
- 5. Questions

Resource adequacy in 2020 remains high in most countries

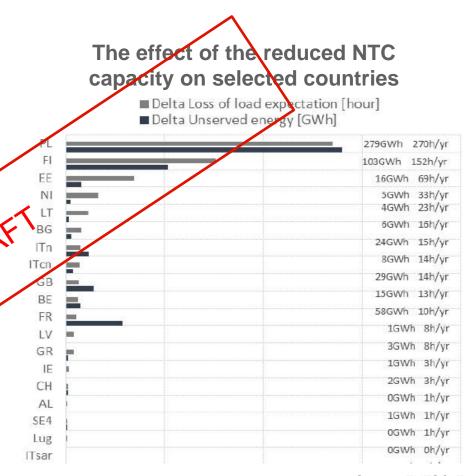

- » Severe risk of resource scarcity has been identified (av. LOLE ≥ 10 hours/year):
 - mainly for islands (Cyprus, Malta, Ireland and Northern Ireland)
 - » and at the periphery of the perimeter (e.g. Albania, Bulgaria, Greece and Finland)
- » LOLE 95th percentile value is high (appr. 35 h) in France, Poland, Italy North and Italy Central-North.

The adequacy situation in 2025 is broadly in line with the one in the 2020

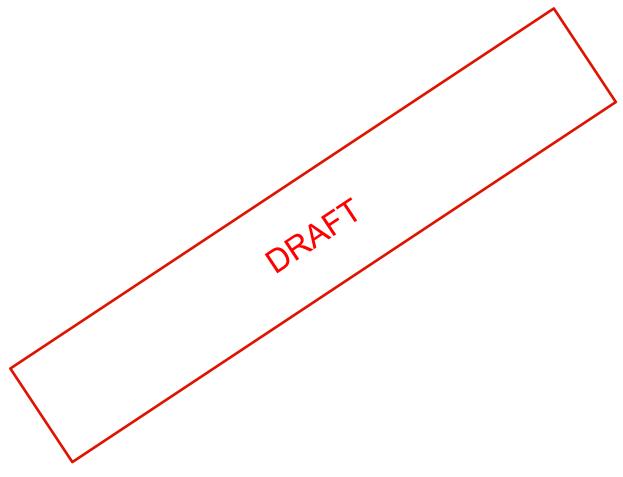
- » Higher adequacy risk compared to 2020:
 - » in the Baltic area due to decommissioning of several old power plants,
 - » in Poland due to high demand growth does,
 - » in Belgium due to various changes on the supply side.
- » Lower adequacy risk compared to 2020:
 - » in Bulgaria due to the new CCGT plants,
 - » Northern Ireland due to the new interconnector


Mothball sensitivity: A significant risk of premature retirement of generation in the central European countries

» Generation capacity at risk of being mothballed, absolute and relative to the total thermal generation capacity due to economic or policy reasons:



The mothball sensitivity is a more conservative view of the adequacy situation



Interconnection sensitivity: interconnectors are crucial for supporting adequacy in large systems

- » Sensitivity assumptions: base case 2025 scenario + NTC capacities from 2020, i.e. no NTC increase between 2020 and 2025.
- » Reducing NTCs in 2025 scenario leads to more ENS in numerous countries.
- » Interconnections can belp to balance supply and demand on a broader geographical scope, thus allowing the deployment of benefits from statistical balancing effects in load and variable renewable generation.

Questions?

swissgrid DRAFT