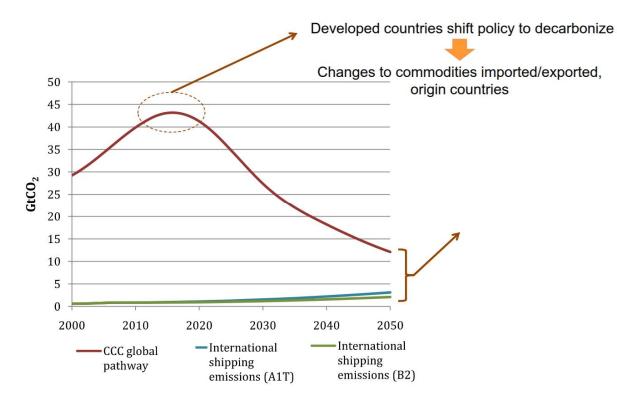


The Future in Naval Transportation

An overview on propulsion for deep sea shipping


Bad news

Until 2030 >99% of the global deep sea shipping will rely on fossil fuels

Good news

This doesn't jeopardize 2°C -goal

Overview

- 1 Introduction: WinGD and its products
- 2 The Marine Market: Who is the customer and what drives the development
- 3 Research & Future Trends

Winterthur Gas & Diesel Ltd.

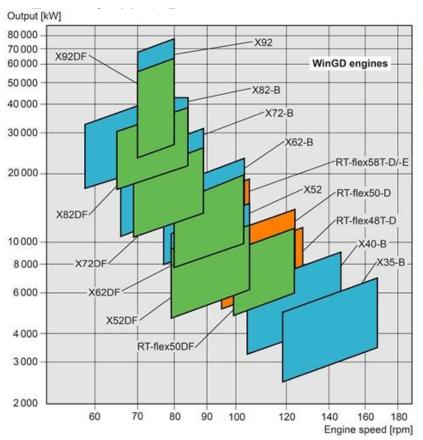
Sulzer Diesel => Wärtsilä Switzerland => WinGD

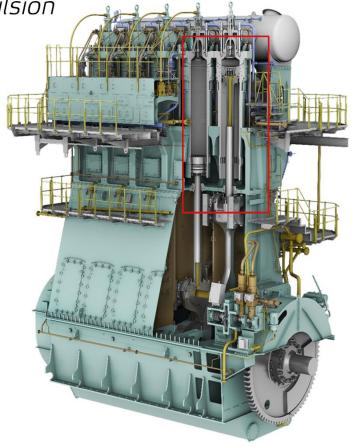
Swiss based company, developing 2-stroke marine engines.

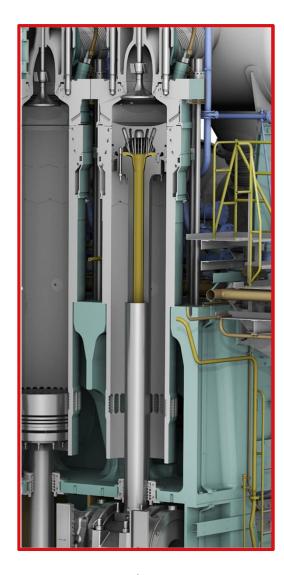
About 330 employees world wide. About 280 employees in Switzerland.

Setup of the company:

- Research & Development
- Operations
- Sales

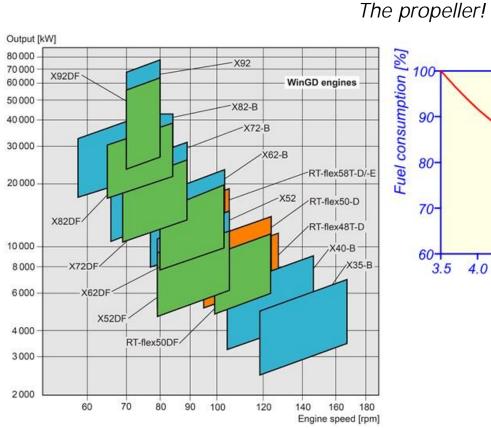

The engines are built at licensees

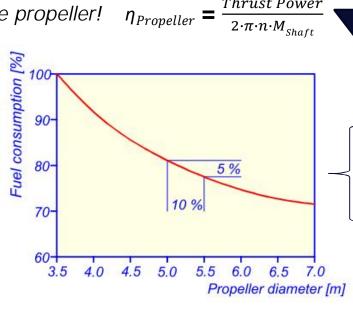


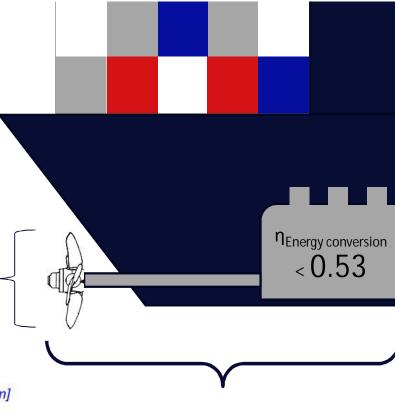


What are 2-stroke engines

Designed for most effective propulsion







Winterthur Gas & Diesel Ltd.

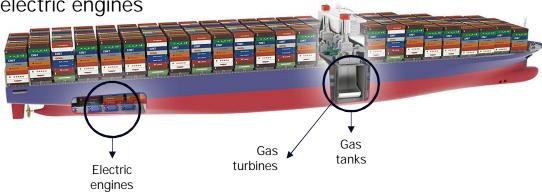
Why Two-stroke engines?

 $\eta_{Propeller}$ $\eta_{Transmission}$ η_{Energy conversion}

With direct shaft: $\eta_{Transmission} = 0.99$

Additional:

Very flexible in fuel type and quality. Low service and maintenance cost.


Thrust Power

Alternatives

What could replace the 2-stroke engine

Gas turbines & electric engines

Energy to propel a large container ship

Energy consumption, comparison:

Rotterdam - New York: 6300 km ≈ 3400 nm

	Distance [km]	Speed	Energy consumed [MWh]		number of containers [-]	•
Ship	6300	25	7926	4522	16000	283
Truck	6300	80	18	6	2	2977

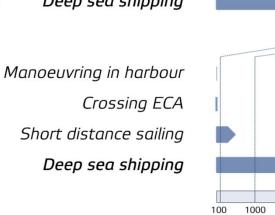
CMA CGM Marco Polo 14-RT-Flex 96 C - 80 MW (max. Power) Built in 2012

http://www.cma-cgm.com/media/magazine-article/1/cma-cgm-marco-polo-round-the-world-in-77-days-

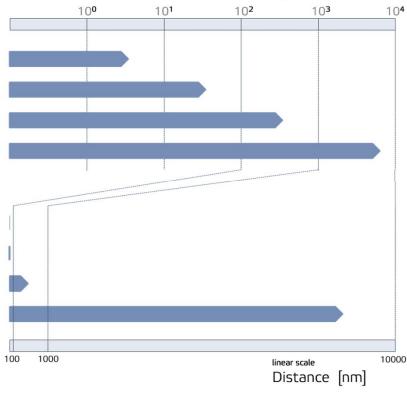
Energy to propel a large container ship

Energy consumption, comparison:

Rotterdam - New York: 6300 km ≈ 3400 nm

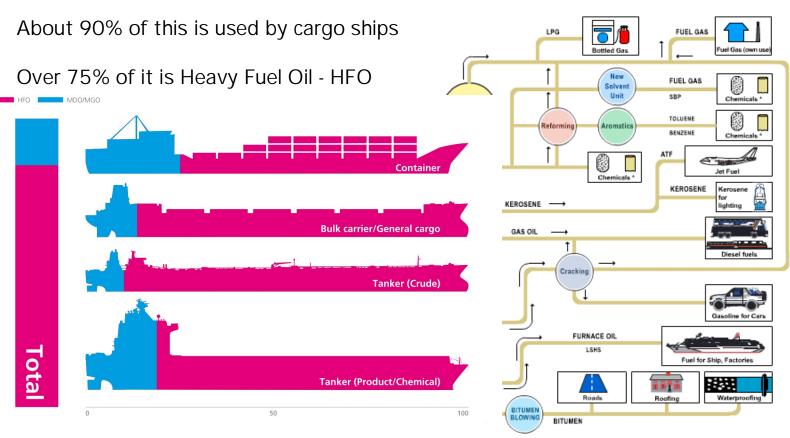

						1
			Energy		number of	CO2 per
	Distance	Speed	consumed	CO2	containers	container
	[km]	[km/h]	[MWh]	[t]	[-]	[kg]
Ship	6300	25	7926	4522	16000	283
Truck	6300	80	18	6	2	2977

Manoeuvring in harbour


Crossing ECA

Short distance sailing

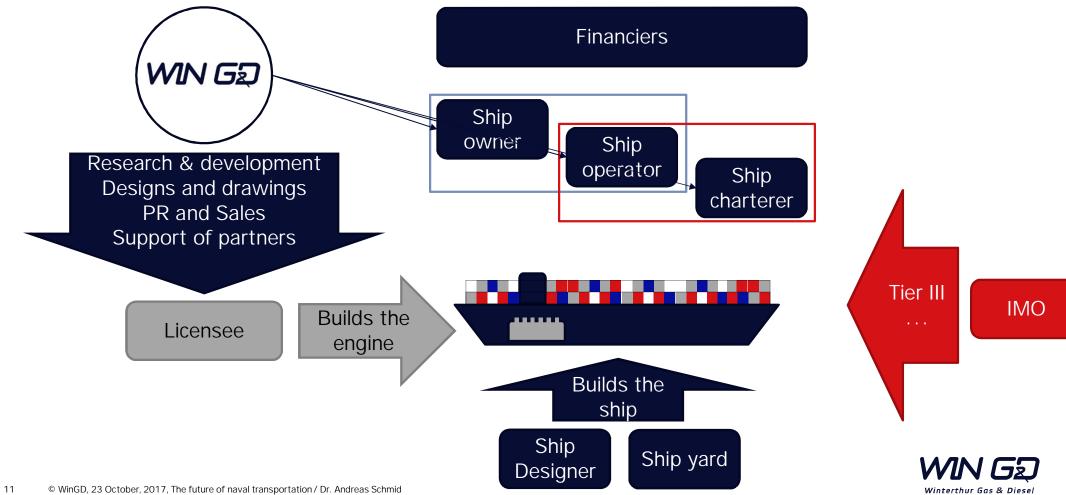
Deep sea shipping



Distance [nm] logarithmic scale

Where does the energy come from...

Consumption marine liquid fuels : 350 Mt / year



Our Customers

No such thing as THE customer, but rather a variety of partners

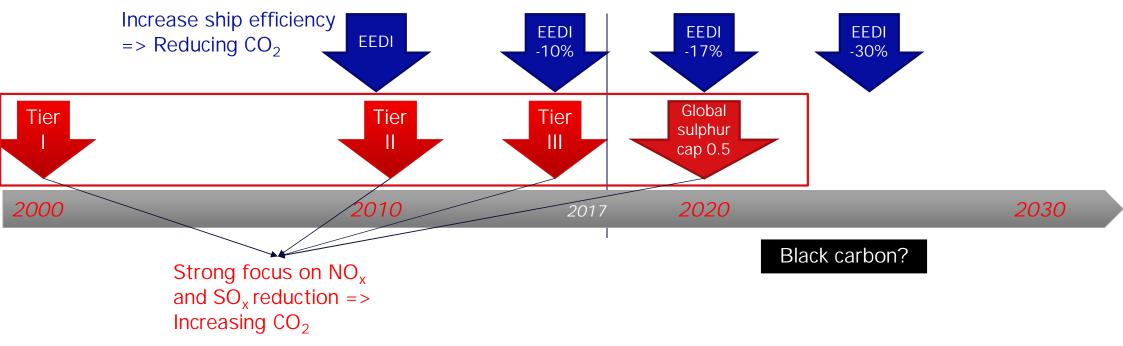
The Marine Market

90% of the global trade is performed with two-stroke engines

This is a very conservative market:

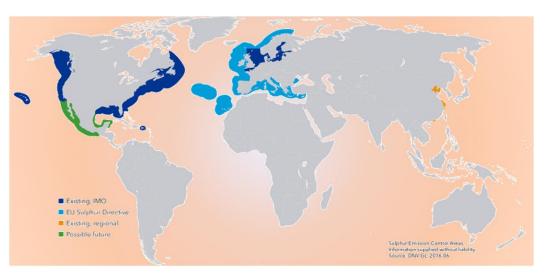
- Ships are in service for around 20 years (up to 30-40 years is still possible)
- The wrong engine can become very cost intensive
- Small incidents can have strong effects (software failure=> engine loss=> loss of manoeuvrability...)

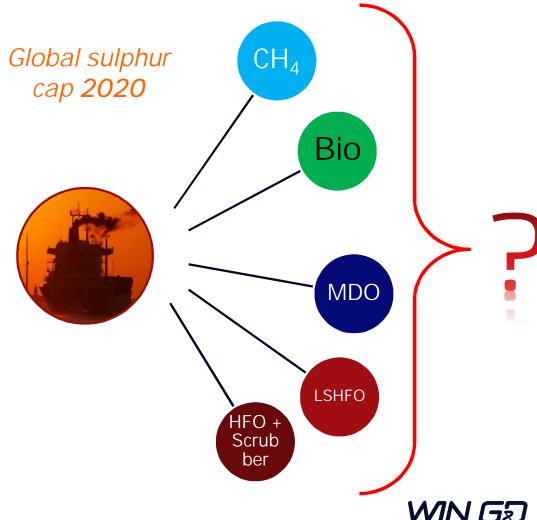
Over the past this market has only been driven by 1 factor costs:


- High Efficiency
- High Reliability
- Low Service intensity

End of the last century emission regulations started to shape the market as well:

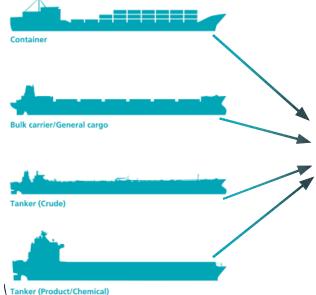
- NO_x regulations
- Sulphur regulations on the fuel


The Marine Market Main drivers



The Marine Market Global sulphur cap 2020

Todays SECAs, ECAs



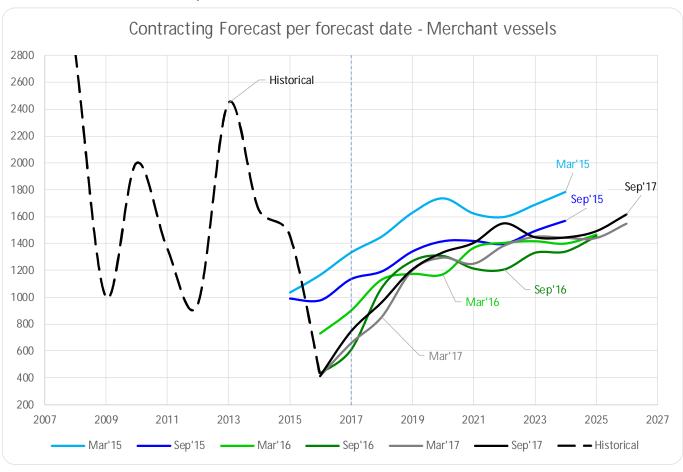
The Marine Market

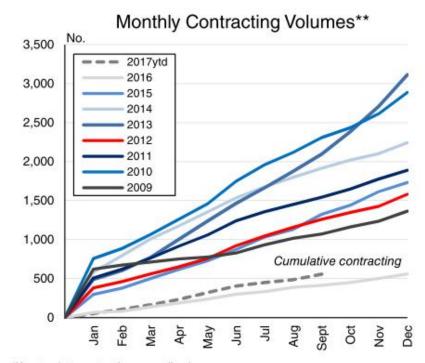
Scenarios

Depending on ship category

Depending on the operational areas and routes the ship takes

Customer setup and financial situation




Best solution

The Marine Market

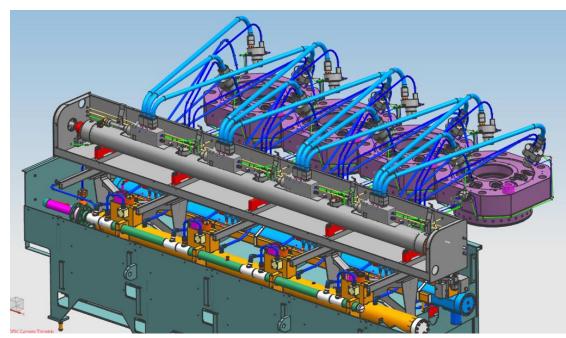
Clarkson's Report

^{*}Year-to-date contracting, annualised.

^{**}Total includes those ship-shaped offshore units below 2,000 Dwt/GT

How does WinGD prepare its products for the future?

Systems for increased fuel flexibility:


- Be prepared for a variety of fuels
- Allow for exotic fuels
- Allow the owner for a high flexibility in his fuel choice

Increase efficiency:

Introduce new technology (e.g. combustion pack)

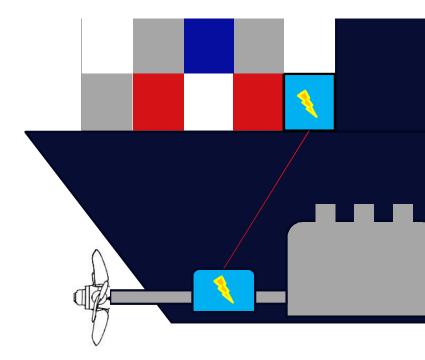
Be aware of new technologies:

 Follow and actively support fuel alternative investigations

Possible Future Research Topics

The challenges ahead

Hybridisation


- Electrification
 - ECA passage
 - Manoeuvring
 - Power compensation (sea margin)
- Energy share on board
 - Investigate the common energy forms on board
 - Find overlapping

Power Generation => Bio-SWEET?

- Fuel flexibility
- Efficiency
- Simplicity

Engine efficiency

- Further reduce Methane slip for DF engines
- "Combustion pack follow up", increase combustion pressure
- Intelligent control system

Conclusions

- The shipping business is already on a very high level of efficiency
- Shipping industry is under high financial pressure, budgets for investments are very limited
- The large amounts of mobilised energy and their worldwide availability reduce the options
- The current situation (market & legislations) makes a prediction on future energy very difficult
- There is not a single solution which fits all situation
- WinGD is preparing for a variety of fuels and expects a slight shift towards Methane.
- Most probably the focus in the marine industry remains on classic fuels for the near and mid term future

Thank you!

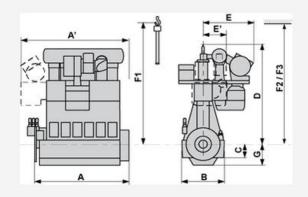
Dr. Andreas Schmid Team Leader Future Technologies Winterthur Gas & Diesel

Landline +41 52 262 24 57 E mail <u>andreas.schmid@wingd.com</u>

Text with Map

Support your audience with visual information

2 vs 4 stroke

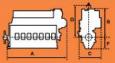

WinGD RT-flex50DF	IMO Tier III in gas mode	
Cylinder bore	500 mm	
Piston stroke	2050 mm	
Speed	99-124rpm	
Mean effective pressure at R1	17.3 bar	
Stroke/bore	4.10	

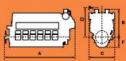
Rated power, principal dimensions and weights

		Output in kW at			_ Length A	Length A*	Weight
Cyl.	124 rpm	124 rpm	99 rpm	99 rpm	mm	mm	tonnes
R1	R2	R3	R4				
5	7 200	6 000	5 750	4 775	5 576	6 793	200
6	8 640	7 200	6 900	5 730	6 456	7 670	225
7	10 080	8 400	8 050	6 685	7 336		255
8	11 520	9 600	9 200	7 640	8 216		280
		В	C		D	E	E.
Di	mensions	3 150	10	88 7	646	3 570	1 900
	(mm)	F1	F2		F3	G	
		9 270	92	70 8	800	1 636	

Brake specific cons	sumptions in	gas mode			
Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	7 200	7 158	7 200	7 158
BSGC (gas)	g/kWh	142.7	141.6	142.7	141.6
BSPC (pilot fuel)	g/kWh	1.5	1.8	1.5	1.8

Brake specific fue	el consumption	n in diesel me	ode		
Rating point		R1	R2	R3	R4
BSFC (diesel)	g/kWh	182.1	182.1	182.1	182.1

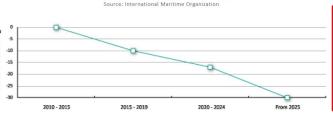

WÄRTSILÄ Engines MAIN TECHNICAL DATA WÄRTSILÄ 50DF Cylinder bore 500 mm Piston stroke 580 mm Cylinder output 950/976 kW/cyl Speed 500, 514 rpm Mean effective pressure 20.0 bar Piston speed 97, 9.9 m/s


MARINE ENGINES, IMO Tier II

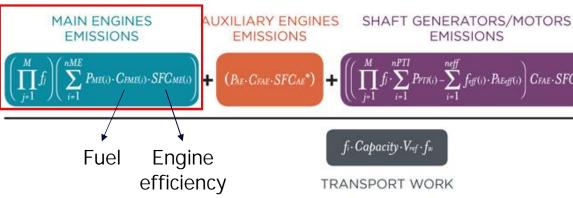
Franks Bass	50	Hz	60 Hz		
Engine type	Engine kW	Gen, kW	Engine kW	Gen, kW	
6L500F	5 700	5 500	5 850	5 650	
81.500F	7,600	7 330	7 800	7 530	
9L500F	8 550	8 250	8.775	8 470	
12V50DF	11.400	11 000	11.700	11 290	
16V50DF	15 200	14 670	15 600	15.050	
18V50DF	17 100	16 500	17 550	16 940	

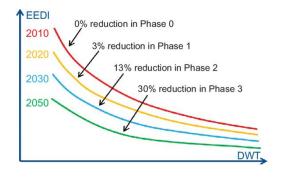
Generator output based on a generator efficiency of 96.5%

Engine type	A	В	C	D	F	Weight
6L500F 8L500E	8 115 9 950	3 580	2 850	3 820	1 455 1 455	96 128
9L500F	10 800	3 600	3 100	3.820	1 455	148
12V50DF 16V50DF 18V50DF	10 465 12 665 13 725	4 055 4 055 4 280	3 810 4 530 4 530	3 600 3 600 3 600	1 500 1 500 1 500	175 220 240



POWER PLANT ENGINES


	Unit	18V50DF	18V500F
Power, electrical	kW	16621	16621
Heat rate	kJ/kWh	7616	8185
Electrical efficiency	%	47.3	44.0
Technical data 60 Hz/51	4 rpm		
Power, electrical	KW .	17076	17076
Heat rate	k.J/kWh	7616	8185
Electrical efficiency	%	47.3	44.0
Dimensions and dry we	ight with generati	ng set	
Length	mm	18780	18780
Width	mm	4090	4090
Height	mm	6020	6020
Weight	tonne	355	355



An Anatomy of the Energy Efficiency Design Index (EEDI) Equation for Ships

CO₂ Reduction from EEDI Baseline

ENGINE POWER (P)

- Main engine power reduction due to individual technologies for mechanical energy efficiency
- PAEff(i) Auxilliary engine power reduction due to individual technologies for electrical energy efficiency
- Power of individual shaft motors divided by the efficiency of shaft generators
- Combined installed power of auxilliary
- PME(i) Individual power of main engines

CO2 EMISSIONS (C)

CO, emission factor based on type of fuel used by given engine

- Main engine composite fuel factor
- = CFAF Auxilliary engine fuel factor CFMF(i) Main engine individual fuel factors

SPECIFIC FUEL CONSUMPTION (SFC)

Fuel use per unit of engine power, as certified by manufacturer

- SFC_{ME} Main engine (composite)
- SFCAE Auxilliary engine
- SFCAE* Auxilliary engine (adjusted for shaft generators)
- SFCMF(i) Main engine (individual)

CORRECTION AND ADJUSTMENT FACTORS (f)

CFAE-SFCAE

Non-dimensional factors that were added to the EEDI equation to account for specific existing or anticipated conditions that would otherwise skew individual ships' rating

- Availability factor of individual energy efficiency technologies (=1.0 if readily
- available) Correction factor for ship specific design elements. E.g. ice-classed ships which

require extra weight for thicker hulls

- Coefficient indicating the decrease in ship speed due to weather and environmental conditions
- Capacity adjustment factor for any technical/regulatory limitation on capacity (=1.0 if none)

SHIP DESIGN **PARAMETERS**

EFFICIENCY

TECHNOLOGIES

 $F_{eff(i)} \cdot P_{eff(i)} \cdot C_{FME} \cdot SFC_M$

Ship speed at maximum design load condition

- Capacity

Deadweight Tonnage (DWT) rating for bulk ships and tankers; a percentage of DWT for Containerships DWT indicates how much can be loaded onto a ship

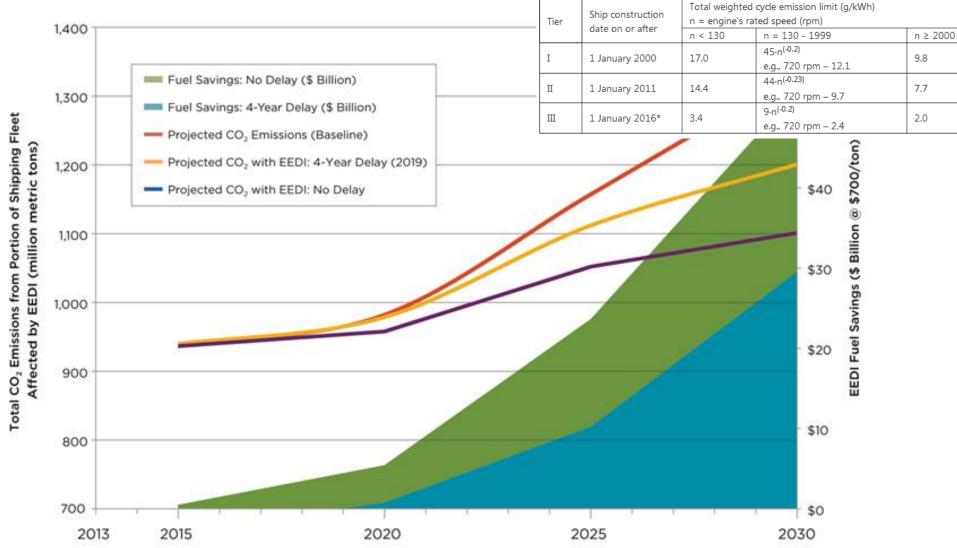


Figure 1. Projected CO_2 emissions and cost savings through 2030 from the shipping fleet affected by EEDI Regulation. IMO Scenario A2, with and without proposed 4-year delay.

LOW CARBON SHIPPING TOWARDS 2050, C. Chryssakis et. al., DNV GL