

The Future in Naval Transportation

An overview on propulsion for deep sea shipping

Bad news Until 2030 >99% of the global deep sea shipping will rely on fossil fuels

Global Commons fuel mix for all 4 ship types (%)

Good news This doesn't jeopardize 2°C -goal

© WinGD, 23 October, 2017, The future of naval transportation / Dr. Andreas Schmid

2

Fig. 18

Overview

1 Introduction: WinGD and its products

2 The Marine Market: Who is the customer and what drives the development

3 Research & Future Trends

Winterthur Gas & Diesel Ltd. Sulzer Diesel => Wärtsilä Switzerland => WinGD

Swiss based company, developing 2-stroke marine engines.

About 330 employees world wide. About 280 employees in Switzerland.

Setup of the company:

- Research & Development
- Operations
- Sales

The engines are built at licensees

What are 2-stroke engines Designed for most effective propulsion

5

Low service and maintenance cost.

Alternatives What could replace the 2-stroke engine

Energy to propel a large container ship

Energy consumption, comparison: Rotterdam – New York: 6300 km ≈ 3400 nm

	Distance	Speed	Energy consumed	CO2	number of containers	CO2 per container
	[km]	[km/h]	[MWh]	[t]	[-]	[kg]
Ship	6300	25	7926	4522	16000	283
Truck	6300	80	18	6	2	2977

CMA CGM Marco Polo 14-RT-Flex 96 C - 80 MW (max. Power) Built in 2012

http://www.cma-cgm.com/media/magazine-article/1/cma-cgm-marco-polo-round-the-world-in-77-days-

Energy to propel a large container ship

Energy consumption, comparison: Rotterdam – New York: 6300 km ≈ 3400 nm

	D'		Energy		number of	CO2 per
	Distance	Speed	consumed	02	containers	container
	[km]	[km/h]	[MWh]	[t]	[-]	[kg]
Ship	6300	25	7926	4522	16000	283
Truck	6300	80	18	6	2	2977

© WinGD, 23 October, 2017, The future of naval transportation / Dr. Andreas Schmid

9

Where does the energy come from...

Consumption marine liquid fuels : 350 Mt / year

WIN Gas & Diesel

Our Customers

No such thing as THE customer, but rather a variety of partners

The Marine Market

90% of the global trade is performed with two-stroke engines

This is a very conservative market:

- Ships are in service for around 20 years (up to 30-40 years is still possible)
- The wrong engine can become very cost intensive
- Small incidents can have strong effects (software failure=> engine loss=> loss of manoeuvrability...)

Over the past this market has only been driven by 1 factor costs:

- High Efficiency
- High Reliability
- Low Service intensity

End of the last century emission regulations started to shape the market as well:

- NO_x regulations
- Sulphur regulations on the fuel

The Marine Market Main drivers

The Marine Market Global sulphur cap 2020

Todays SECAs, ECAs

The Marine Market

Scenarios

Depending on ship category

The Marine Market Clarkson's Report

Winterthur Gas & Diesel

How does WinGD prepare its products for the future?

Systems for increased fuel flexibility:

- Be prepared for a variety of fuels
- Allow for exotic fuels
- Allow the owner for a high flexibility in his fuel choice

Increase efficiency:

Introduce new technology (e.g. combustion pack)

Be aware of new technologies:

• Follow and actively support fuel alternative investigations

Possible Future Research Topics

The challenges ahead

Hybridisation

- Electrification
- ECA passage
- Manoeuvring
- Power compensation (sea margin)
- Energy share on board
- Investigate the common energy forms on board
- Find overlapping

Power Generation => Bio-SWEET?

- Fuel flexibility
- Efficiency
- Simplicity

Engine efficiency

- Further reduce Methane slip for DF engines
- "Combustion pack follow up", increase combustion pressure
- Intelligent control system

Conclusions

- The shipping business is already on a very high level of efficiency
- Shipping industry is under high financial pressure, budgets for investments are very limited
- The large amounts of mobilised energy and their worldwide availability reduce the options
- The current situation (market & legislations) makes a prediction on future energy very difficult
- There is not a single solution which fits all situation
- WinGD is preparing for a variety of fuels and expects a slight shift towards Methane.
- Most probably the focus in the marine industry remains on classic fuels for the near and mid term future

FOR INTERNAL USE ONLY

Thank you!

Dr. Andreas Schmid Team Leader Future Technologies Winterthur Gas & Diesel

Landline +41 52 262 24 57 E mail <u>andreas.schmid@wingd.com</u>

www.wingd.com

Text with Map Support your audience with visual information

2 vs 4 stroke

WinGD RT-flex50DF	IMO Tier III in gas mode	
Cylinder bore	500 mm	
Piston stroke	2050 mm	
Speed	99-124rpm	
Mean effective pressure at R1	17.3 bar	
Stroke/bore	4.10	

Rated power, principal dimensions and weights

		Output in	Output in kW at		Leooth A	Loooth A"	Weight
Cyl.	124 rpm	124 rpm	99 rpm	99 rpm	mm	mm	tonnes
R1	R2	R3	R4				
5	7 200	6 000	5 750	4 775	5 576	6 793	200
6	8 6 4 0	7 200	6 900	5 730	6 456	7 6 7 0	225
7	10 080	8 400	8 050	6 685	7 3 3 6		255
8	11 520	9 600	9 200	7 640	8 2 1 6		280
		в	С		D	E	E.
Di	mensions	3 150	1 0	88 7	646	3 570	1 900
(mm)		F1	F2		F3	G	
		9 2 7 0	92	70 8	800	1 636	

Brake specific consumptions in gas mode

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	7 200	7 158	7 200	7 158
BSGC (gas)	g/kWh	142.7	141.6	142.7	141.6
BSPC (pilot fuel)	g/kWh	1.5	1.8	1.5	1.8

Brake specific fuel consumption in diesel mode

Rating point		R1	R2	R3	R4
BSFC (diesel)	g/kWh	182.1	182.1	182.1	182.1

© WinGD, 23 October, 2017, The future

22

MAIN TECHNICAL DATA WÄRTSILÄ 50DF

Cylinder bore	500 mm		
Piston stroke	580 mm		
Cylinder output	950/975 kW/cv		
Speed	500, 514 rpm		
Mean effective pressure	20.0 bar		
Piston speed	9.7, 9.9 m/s		

MARINE ENGINES, IMO Tier II

+	50	Hz	60	60 Hz		
Engine type	Engine kW	Gen, KW	Engine kW	Gen, kW		
6L50DF	5 700	5 500	5 850	5 650		
8L500F	7.600	7 330	7 800	7 530		
9L500F	8 550	8 250	8 775	8 470		
12V50DF	11.400	11 000	11 700	11 290		
16V50DF	15 200	14 670	15 600	15 050		
18V50DF	17 100	16 500	17 550	16 940		

ENGINE DIMENSIONS (MM) AND WEIGHT Engine type 6L50DF 2 850 3 820 1 455 8.11 3 580 96 RI 5006 9L500F 10 800 3 600 3 100 3 820 1 455 148 4 055 3 810 3 600 4 055 4 530 3 600 4 280 4 530 3 600 12V500F 16V50DF 10 465 12 665 1 500 1 500 1 500 220 240 13 725 18V50DF

POWER PLANT ENGINES

	Unit	18V50DF	18V500F*
Power, electrical	KW	16621	16621
Heat rate	kJ/kWh	7616	8185
Electrical efficiency	%	47.3	44.0
Technical data 60 Hz/51	4 rpm		
Power, electrical	KW	17076	17076
Heat rate	k.J/kWh	7616	8185
Electrical efficiency	%	47.3	44.0
Dimensions and dry we	ight with generati	ng set	
Length	mm	18780	18780
Width	mm	4090	4090
Height	mm	6020	6020
Weight	tonne	355	355

An Anatomy of the Energy Efficiency Design Index (EEDI) Equation for Ships

Figure 1. Projected CO₂ emissions and cost savings through 2030 from the shipping fleet affected by EEDI Regulation. IMO Scenario A2, with and without proposed 4-year delay.

24

LOW CARBON SHIPPING TOWARDS 2050, C. Chryssakis et. al., DNV GL