

Simulation of high-resolution gridded climate variables for present and future climates

Nadav Peleg, Paolo Burlando

SCCER-SoE Annual Conference 2018

We are looking for a tool that:

- Generate all the climate variables needed for hydrological/morphological/hydropower operation
- Can be use to downscale climate variables to finer spatio-temporal resolution
- Reliably reproduce the present climate
- Can be use to generate multiple realizations of the future climate
- Is fast and computational inexpensive

AWE-GEN-2d in a nutshell

 AWE-GEN-2d (Advanced WEather GENerator for 2-Dimensional grid) follows the philosophy of combining physical and stochastic approaches to generate gridded climate variables in a high spatial and temporal

resolution

AWE-GEN-2d in a nutshell

- AWE-GEN-2d (Advanced WEather GENerator for 2-Dimensional grid) follows the philosophy of combining physical and stochastic approaches to generate gridded climate variables in a high spatial and temporal resolution
- It is relatively fast and parsimonious in terms of computational demand
- It allows generating many stochastic realizations of present and future climates

Generating multiple realizations of future climate

- AWE-GEN-2d can be used to generate multiple realizations of future climate by re-parameterizing several of the parameters that were estimated from observed data
- Changes are computed on decadal bases using a 30-year window

Generating multiple realizations of future climate

- The "factors of change" (FC) approach is used for the re-parameterization of AWE-GEN-2d
- FC can be a product factor (e.g. for precipitation statistics), or can be an additive factor (also known as Δ-change, e.g. for temperature statistics)

Factors of change:
$$S(h)_v^{FUT} = \frac{S(h)_v^{CLM,FUT}}{S(h)_v^{CLM,CON}} S(h)_v^{OBS}$$

Validated for present climate

- Validated for present climate
- FC significantly differ between climate models

- Validated for present climate
- FC significantly differ between climate models
- The signal of climate change is nonhomogeneous

AWE-GEN-2d: new CH2018 climate scenarios

- New CH2018 official climate scenarios are soon to be released (November 2018)
- FC were computed for all RCMs (RCP2.6, RCP4.5 and RCP8.5) on decadal and seasonal basis on a 2-km resolution for the period of 2020-2099
- Pr: mean, standard deviation and occurrence
- T: mean and standard deviation
- Data is available upon request for the SCCER-SoE partners

AWE-GEN-2d: calibrated areas in Switzerland

- Engelberg
- Maggia
- Thur
- Kleine Emme
- Gletsch
- Guerbe
- Oberhasli
- Mattmark

Applications

High resolution climate scenarios for snowmelt modelling

(Schirmer and Peleg)

Changes in future river sediment yield

(Peleg and Ramirez)

Multiobjective optimal operation of the Maggia hydropower systems

(Anghileri et al.)

Thank you for your attention!

Dr. Nadav Peleg

Hydrology and Water Resources Management Institute of Environmental Engineering ETH Zurich

nadav.peleg@sccer-soe.ethz.ch

Peleg, N., Fatichi, S., Paschalis, A., Molnar, P., and Burlando, P. (2017) **An advanced stochastic weather generator for simulating 2-D high resolution climate variables** *Journal of Advances in Modeling Earth Systems*, 9, p. 1595-1627

Peleg, N., Molnar, P., Burlando, P., and Fatichi, S. (under review) **Exploring stochastic climate uncertainty using a gridded hourly weather generator** *Journal of Hydrology*