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Bottom Outlet Hydraulics
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Swiss Energy Strategy 2050
+ 3.1 TWh/a of flexible peak and winter energy in 2050
 Dam heightening 

Climate Change
Glacier/permafrost retreat exposes instable hillslopes
 Increased risk of impulse waves
 Increased reservoir sedimentation in periglacial 

environments

 Increased load on outlet structures
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Motivation
Adapt hydraulic structures to meet future demands
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© Maggia
Dam heightening at Luzzone 1998

© VAW
Reservoir sedimentation at Griessee
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Bottom Outlets: Key Safety Devices
Purposes & Challenges
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Purposes:
 Control of reservoir level
 Sediment flushing
 Residual flow release
 Flood discharge

Challenges:
 Cavitation
 Gate vibration
 Flow choking / slugs

 «sufficient» aeration is crucial for a safe operation
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Goal 
Improve design guidelines
by including the effects of 
 Air vent 
 Tunnel length
 Tunnel slope
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State of Knowledge
Air demand β = Qa,o/Qw
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Ausschreiben



| 5SCCER SoE Annual Conference 2018

Methods
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Physical Model 
Model scale λ ≈ 10
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© VAW © VAW

Max. length L = 20.6 m 
Max. energy head HE = 30 m w.c.
Max. discharge Qw = 600 l/s

Max. flow velocity @ vena contracta ≈ 24 m/s
Max. gate opening amax = 0.25 m
Tunnel width W = 0.2 m, tunnel height ht = 0.3 m
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Tunnel length L = 20.6, 12.6, 6.6 m
Tunnel slope S = 0 - 0.04 
Tunnel width W = 0.2 m
Tunnel height ht = 0.3 m
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Physical Model 
General setup
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Energy head HE = 5 - 30 m w.c.
Relative gate opening a/amax= 0.1 - 0.8
Water discharge Qw = 60 - 600 l/s

Air vent loss coefficient ζ = 0.7 - 37 

© VAW
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Model Tests: Air Demand
Effect of flow pattern, a/amax and HE

(II) free-surface flow (III) foamy flow
Sharma (1973)

(I) spray flow
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Model Tests: Air Demand
Effect of air vent loss coefficient ζ
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β = 0.007 Fc1.20ζ-0.25(Lt/ht)0.26(1+S)-0.92 

Limitations
 Free surface flow
 No profile transition
 8 ≤ Fc ≤ 45
 0.7 ≤ ζ ≤ 20
 22 ≤ Lt/ht ≤ 69
 0 ≤ S ≤ 0.04
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Model Tests: Air Demand
Design Equation
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Air Demand
Comparison to prototype data

Data from literature
 Curnera (Lier & Volkart 1994)
 Mauvoisin (Schilling 1963)
 Norfork (USACE 1954) 
 Panix (Volkart & Speerli 1994) 

Safety factors (SF) for practical applications
 No profile transition SF = 1.2
 Smooth profile transition SF = 2
 Abrupt profile transition SF = 3 to 4
(Levin 1965, Sharma 1973)
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 SF = 2

 SF = 1.2
 SF ~ 3

© VAW
Bottom outlet gate Luzzone

© VAW
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Prototype tests at Malvaglia and Luzzone
In cooperation with Ofible, financially supported by Lombardi Engineering Foundation
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 Increased process understanding from physical model tests
 Improved design equation
 First validation of model results with prototype data from literature

 More high-quality prototype data needed to further reduce uncertainty for 
upscaling & practical applications

 Numerical design tools require further development
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Conclusions & Outlook
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Air demand: Effect of Profile Transition
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Model Tests: Slug flow
Effect of air vent loss coefficient ζ
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1) Air entrainment: Limiting Weber number W > 170 (Skripalle 1994)
2) Jet break-up: Same regime
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Physical model
Scale effects
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(left) Primary jet break-up (Ohnesorge 1936)
(right) Secondary jet break-up (Krezeczkowski 1980)

W = (u2ρL/σ)0.5

R = uL/ν
O = W/R
L = (ρσL)/η2

L = reference length
u = reference velocity
η = dynamic viscosity
ν = kinematic viscosity
ρ = density
σ = surface tension coeff.

Illustration of jet break-up (Trinh 2007)
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Prototype Tests HPP Blenio
Luzzone and Malvaglia dam
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0 100 200 m

New bottom outlet
 Scale compared to phys. Model

λ ≈ 10 
 HE = 82 m w.c.
 L = 82 m

Section A-A
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U1-2: Vane anemometers 0-120 m/s
U3-7: Vane anemometers -60-60 m/s
P1-5: Absolute pressure sensors 700-1200 mbar
T1-2: Air temperature sensors -30-40°C
R: Flow direction sensor 0-360°
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Malvaglia Test Site
Instrumentation

26th ICOLD Congress

Measurement of:
 Air vent discharge Qa,o
 Air flow from d/s Qa,u
 Air vent loss coefficient ζ
 Air pressure pa
 Air temperature Ta



|

 Influence of flow pattern
 Influence of Fc

 Influence of ζ
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Prototype Tests: Preliminary Results
New Bottom Outlet Malvaglia
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