Measuring and modeling subglacial sediment transport in the Swiss Alps

Ian A. Delaney Mauro A. Werder , Andreas Bauder, Mathias Huss, Daniel Farinotti

Laboratory of Hydraulics, Hydrology and Glaciology

Energy Turnaround National Research Programme

SWEES COMPETENCE CONTEX IN ENERGY RESEARCH

SCCER SOE

glacier sediment

Griesgletscher

sediment sources

from around the glacier

from **below** the glacier

proglacial areas

digital surface models created from annual aerial photographs

photos from SwissTopo and G. Kappenberger

proglacial erosion

Increase in recent volume loss from Griesgletscher's proglacial area determined from photogrammetrically derived DEM subtraction.

subglacial sediment: how important?

Timespan	% Vol. Subglacial	$\Delta H PGA$	∆H Subglacial
		cm a^{-1}	${ m cm}~{ m a}^{-1}$
1976(86) -	72 %	-5.96	-0.10
2014			

photo G. Kappenberger

More recent comparisons suggest that the amounts of subglacial sediment increased in recent years.

subglacial sediment: how important?

- proglacial areas could stabilize relatively quickly.
- our data suggests that more sediment originates subglacially than proglacially.

```
(Delaney et al., 2018)
```


so to understand alpine sediment dynamics, we must understand subglacial sediment transport as well!

subglacial sediment: sediment and water

sediment data from Gorner and Aletsch glaciers over 2016 and 2017

subglacial sediment: sediment availability

so subglacial sediment availability must be considered. (Delaney et al., *in revision*)

modeling: framework

sediment discharge = f(sediment availability, shear-stress)

shear-stress = f(hydraulics)

so several models must be implemented:

- 1. a hydraulics model (Darcy-Weissbach)
- 2. a sediment transport model (Engelund-Hansen, 1967)
- 3. a till layer model (sliding relationship)

model performance: multi-year time spans

Griesgletscher 2011-2016

- interannual variations are captured...
- ► but there are some difficulties with extreme years
 - demonstrating limitations of sediment availability scheme

total water discharge (m³ x 10⁶)

model performance: seasonal time spans (Gorner)

- ► Nash-Sutcliffe: 0.70
- captures total sediment discharge within 15%

model performance: seasonal time spans (Aletsch)

- ► Nash-Sutcliffe: 0.54
- captures total sediment discharge within 15%

final thoughts

- smaller amounts of sediment come from proglacial areas compared to subglacial sources ...
 - ... but erosion rates in proglacial areas are greater
- a subglacial sediment transport can be modelled with reasonable ability

... now these **observations** and **models** needs to better assess how **sediment dynamics** will evolve in a changing climate.