

SUPPLY of ELECTRICITY

Lucerne University of Applied Sciences and Arts

HOCHSCHULE LUZERN

Technik & Architektur

Recent Advances in Numerical Predictions for Off-Design Conditions in Hydraulic Turbomachines

CC Fluid Mechanics and Hydraulic Machines David Roos Launchbury 13.09.2018

Pump Turbine System

C. Gentner, Challenges in the Design of Pump Turbine, 2012

- The special geometry of the pump turbine has a negative impact on the stability of the hydraulic system

Pump Turbine Start-up Procedure

Normalised Flow Rate Turbine Start-up 15 deg proce -1···-10 deg 6 deg 3 deg 1 deg **Normalised Machine Speed** Potentially unstable Pump

Engineering and Architecture

Instabilities in Pump Turbines

- The instabilities can lead to:
 - Additional dynamic stresses
 - Restrictions in the operating range
 - Unfavourable dynamic behaviour
 - Difficulties to synchronize the turbine with the power grid

Simulation of Synchronisation Conditions

- The dominant flow features vary in **space** and **time**
- Computational domain:
 - Full-size pump-turbine (periodicity not valid)
 - Transient simulation with sufficiently small time-step

Hochschule Luzern

Engineering and Architecture

Vaneless space

Simulation of Synchronisation Conditions

Simulation with SST k-ω is unable to capture the instability

Turbulence models have a large influence on the vortex formation in the vaneless **space**, and therefore determine the stability of the characteristic

Eddy Viscosity Turbulence Models

- Reynolds averaging of momentum equation leads to additional stress terms (divergence of a symmetric tensor, "Reynolds stress tensor")

$$\frac{\partial \bar{u}_i}{\partial t} + \frac{\partial (\bar{u}_i \bar{u}_j)}{\partial x_j} = \bar{f}_i - \frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\nu \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right) \right) - \frac{\partial \tau_{ij}}{\partial x_j}$$

- Usually turbulence models use the Boussinesq hypothesis to model the effect of the Revnolds stress tensor.

$$\tau_{ij} - \frac{1}{3}\tau_{kk}\delta_{ij} = \nu_t \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i}\right) = 2\nu_t \bar{S}_{ij}$$

- Effects of the Reynolds stresses cause increased mixing and dissipation
→ Artificial "turbulent" viscosity (added to laminar viscosity)

$$\frac{\partial \bar{u}_i}{\partial t} + \frac{\partial (\bar{u}_i \bar{u}_j)}{\partial x_j} = \bar{f}_i - \frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\nu \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right) \right) - \frac{\partial \tau_j}{\partial x_j}$$

Eddy Viscosity Turbulence Models

$$\frac{\partial \bar{u}_i}{\partial t} + \frac{\partial (\bar{u}_i \bar{u}_j)}{\partial x_j} = \bar{f}_i - \frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\nu \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right) \right) - \frac{\partial \tau_{ij}}{\partial x_j}$$

- Problem: Eddy viscosity is a scalar quantity, i. e. added diffusion is isotropic
- Turbulence is hardly ever isotropic, especially not in fully formed vortices
- Isotropic eddy viscosity models have trouble reproducing the flow field in the vaneless spaces of a pump turbine
- The vortex structures strongly affect the incoming flow into the runner

Eddy Viscosity Turbulence Models

$$\frac{\partial \bar{u}_i}{\partial t} + \frac{\partial (\bar{u}_i \bar{u}_j)}{\partial x_j} = \bar{f}_i - \frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\nu \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right) \right) - \frac{\partial \tau_j}{\partial x_j} \right)$$

- Solution: Use turbulence models that allow anisotropy and model the full Reynolds stress tensor
- Explicit Algbraic Reynolds Stress Models (EARSM)
 - Based on standard 2-equation models
 - Try to reconstruct the stress tensor algebraically from the velocity gradients
- Full Reynolds Stress Models
 - Solve transport equations for all 6 components + scale equation

NACA0012 Tip Vortex Flow Comparison

- Evaluation of crossflow velocity in NACA0012 profile tip vortex

Engineering and Architecture

NACA0012 Tip Vortex Flow Comparison

- Evaluation of crossflow velocity in NACA0012 profile tip vortex (0%, 24%)

Crossflow Velocity in Wing Tip Vortex of NACA0012 at X/C = 0.0

Crossflow Velocity in Wing Tip Vortex of NACA0012 at X/C = 0.24

Hochschule Luzern

NACA0012 Tip Vortex Flow Comparison

- Evaluation of crossflow velocity in NACA0012 profile tip vortex (67%)

Engineering and Architecture

NACA0012 Tip Vortex Flow Comparison

- Evaluation of crossflow velocity in NACA0012 profile tip vortex (582%)

NACA0012 Tip Vortex Flow Comparison

What's the catch?

- Reynolds stress models improve the results significantly for vortex dominated flows
- Drawbacks of these models?
 - Decoupling of stress and velocity fields → checkerboarding
 - Stability and convergence issues
 - Increased computational effort (7 equations for full RSM)
- Goal: reduce/eliminate these drawbacks

Efforts to Reduce Disadvantages of Reynolds Stress Models

- Checkerboarding solutions:
 - Replace normal components of interpolated Reynolds stresses using a smaller stencil, leading to tight coupling and disappearance of decoupling.
- Computational effort and stability
 - Couple Reynolds stress equations (only applicable to full RSM)

Results: Backward Facing Step with Coupled and Segregated RS Eqns

SWISS COMPETENCE CENTER for ENERGY RESEARCH

Conclusion & Outlook

- Turbulent structures in vaneless space have a strong influence on the characteristics in regions of instability
- Using non-isotropic turbulence models leads to an improved prediction of pump turbine instability
- Inter-equation coupling of the full Reynolds stress models shows promising preliminary results
- Models not yet optimised for efficiency
- Coupling can lead to badly conditioned linear systems in more complicated cases