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Motivation, Goals & Ohjectives Key Results - Gross-hole Tests

Better understanding how heterogeneity impacts fluid flow
and pore pressure diffusion in geological media In-situ Is
paramount for many disciplines in earth sciences as well as
for industries relying on natural resources, including deep
geothermal energy (DGE) applications - as is planned as
part of the Swiss Energy Strategy 2050.

» Normalized cross-hole pressure responses are distributed into two
clusters, generally consistent with known structural domains

» Responses in the S3 shear zone (grey curves) show a strong power-
law behaviour (unlike most breakthrough in S1), with a mean fractional
dimension of 1.3 — see Fig 5.
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