

14 September 2017, SoE Annual Conference 2017

Hydropower: View from the Industry

Daniel Fischlin

CEO

Key data of KWO

	Employees therefrom apprentices	318 full-time jobs 23	Brünigpass
A MA	Annual production	2'130 GWh (2016)	Aare Hasliberge Sustenpass
Ć	Annual inflow	800 Mio. m ³	H 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Annual turnover	CHF 140 Mio.	Guttannen
- Aller	Storage capacity	195 Mio. m³ 8 storage lakes	Wetterhorn Ritzlikorn Handet,
	Installed capacity	1'317 MW	Schrechhom Bächlatock Genetenger
	Power plants	10	Unteraargletscher
	Catchment area	420 km ²	Finsterashom 4274 m.0. M. Oberashom Oberastor Oberastor A a r 9 r a t A a r 9 r a t

Shareholders of KWO

- BKW Energie AG, ½
- Energie Wasser Bern, 1/6
- Industrielle Werke Basel, ¼
- Stadt Zürich, ¼

Questions to be reflected

- How the power plant park will develop in the surrounding countries?
- Which storage technology will prevail and in what time frame?
- Will the "energy only" market continue to exist?
- What influence will the abandonment of nuclear energy 2022 in Germany have on the prices?
- Are the empty storage lakes during the winters 2015 and 2016 an indication of a long-term trend?

Production costs of all joint ventures

Unter der Schmerzgrenze

Entwicklung der Grosshandelspreise in Deutschland

Drohende Millionenverluste

Prognostizierte jährliche Defizite der Schweizer Wasserkraftwerke

Quelle: Thomson Reuters, Independent Credit View

Quelle: Independent Credit View, UREK-N

Developments in the European electricity market

- **Decommissioning of generation capacities** in Europe and Switzerland:
 - nuclear power phase-out 2022 in Germany (-10.8 GW inst. capacity; total 20.9 GW)
 - deactivation NPP M
 ühleberg in Switzerland (-373 MW inst. capacity)?
 - deactivation NPP Beznau 1 in Switzerland (-365 MW inst. capacity)?
- More expected breakdowns of aging NPP's in France
- **Delay in the construction** of the HVDC transmission line from the north to the south in Germany → Excessive production in the north cannot be transmitted to the southern part of Germany
- **Winter period:** Increasing demand for power output and storage capacity \rightarrow The gap caused by energy from wind and solar sources can be closed by hydro production, primarily by storage power plants

Prepared for the future:

KWO is able to supply the demand thanks to the expansion projects:

- New storage lake Trift, new power plant Trift \checkmark
- **Enlargement of Lake Grimsel**
- New Pump Storage Plant Grimsel 1E

Winterperiode: Nachfrage > Angebot

Situation in Germany January 2017

Impacts on grid stability

December 2016

- Power production in CH is not sufficient. Duty cycle of imports: 94 %
- 18 frequency deviations +/- 100 mHz
- 22 French NPP`s out of order
- Risk of cascading outages in certain regions
- The international warning system RAAS has been placed on amber alert 10 times.
- International redispatches: in emergency operations the TSO's help each other across borders to stabilise the power grid

Januar 2017

- Power production in CH is not sufficient. Duty cycle of imports: 98 %
- 28 frequency deviations +/- 100 mHz
 - 6 French NPP`s out of order
- Warning system 20x on amber alert and 1x on red alert (close to a blackout)
- Redispatch Swissgrid for the European power grid only in absolute emergency, because the reserves in the storage lakes were too low.

\rightarrow KWO empty the lake Oberaar to support the power grid

KWO`s contribution to grid stability January 2017

Result: Lake Oberaar was empty!

Annual production in Switzerland

2015

Production cycles renewable sources

Two scenarios 2035 without NPP's

5

consumption

 \rightarrow Both scenarios forecast a lack of power

deficit

Scenario BFE energy strategy

- storage hydropower
- run-of-the-river hydropower
- photovoltaics
- wind
- biomass
- thermal power plants

Installed capacity in Germany

Bundesnetzagentur - Netzentwicklungsplan Strom 2012 - Szenario B

Forecasted capacity in Germany

Development of the power plant park in Germany

15

Electricity market and pricing

- Base for today's electricity price: marginal costs
- Market distortion energy from wind and sun
 - → variable costs decrease to zero
 - → subsidised by the state

present time

- Conventional power plants are "gap fillers"
- Loss-making power plants:
 - operating hours 7 uncovered costs
- Power plants free of charge in stand-by mode
 → only sold energy is paid

Der strompreisdämpfende Effekt der Erneuerbaren Energien (Merit-Order-Effekt) senkt den Börsenstrompreis

- Another pricing model?

future

- Provision of capacities will be compensated?
- Electrical energy more favourably priced, on the other hand rising grid costs?
- Producers can charge higher prices during peak loads?

Quelle: BEE/Greenpeace energy/IZES

Questions to be reflected

- What is the influence on grid stability by decreasing inertia masses?
- What is the time frame for "electronic inertia" to achieve industrial maturity?

Model of the Central European power grid

- Rotating shaft, which turns at a rate of 50 rotations per second
- All producers und consumers coupled by a shaft
- Producers accelerate, consumers decelerate the shaft
- Production \neq consumption \rightarrow speed change

UCTE as model: shaft with r = 1m, l = 2 km

RG Continental Europe (UCTE

RG Nordic RG United Kingdom

RG Ireland RG Baltic

Offers of ancillary services

Influence on grid stability by inertia masses

02.04.2003 - AKW Paluel (F)

Failure of one 1.2 GW power plant unit

Frequency deviation $\Delta f = -50 \text{ mHz}$

Half inertia masses $\rightarrow \Delta f = -100 \text{ mHz}$

The **decrease of inertia masses** leads to an **increased risk** of dangerous frequency drops.

Grids with **less inertia masses react more sensitively** to frequency oscillations

Aspects to be reflected

- The increase in photovoltaic capacity causes an over-availability of energy in summer.
- KWO is only able to store 25% of the annual inflow (April-October) and therefore can be transferred to the winter period.
- KWO in function as a "run-of-river power station" does not produce enough revenue during the summer period.
- Sufficient pump-storage capacity in Switzerland for the coming years

=> Safeguarding the future of KWO by means of expanding the storage capacity

Retreat of the Trift glacier

Trift Dam

Storage project Trift – Gadmen valley

Storage project Grimsel – Aare valley

Storage project Grimsel – Aare valley

Substantial increase of storage energy throughout Switzerland with take out a low environmental impact

Göscheneralp:

- height: 155 m
- lake's surface: 1.32 km²
- dam volume: 9.3 Mio m³
- energy content : 221 GWh

Limmern:

- height: 146 m
- lake's surface: 1.36 km²
- dam volume: 0.6 Mio m³
- energy content : 258 GWh

Oberaar:

- height: 104 m
- lake's surface: 1.46 km²
- dam volume: 0.45 Mio m³
- energy content : 243 GWh

Increase lake Grimsel:

- additional height: 23 m (present height: 114 m)
- additional lake's surface: 0.8 km²
- additional dam volume: 0.5 Mio m³
- additional energy content: 240 GWh
- present energy content: 270 GWh

New construction of Spitallamm Dam (lake Grimsel) as of 2019

New construction of Spitallamm Dam as of 2019

New construction of Spitallamm Dam as of 2019

View of the new dam

Thank you very much for your interest

HYDROPOWER has good prospects for the future

...and KWO takes on the role of take out the most important player