ETH:zurich

R

Grimsel In-situ Stimulation and Circulation experiment:

First results
SCCER Annual meeting 14 — 15.09.2017, Birmensdorf, Switzerland

J. Doetsch, F. Amann, V. Gischig, M. Jalali, H. Krietsch, B. Valley, C. Madonna,
M. Nejati, M. Klepikova, K. Evans, A. Kittlila, L. Villiger, B. Brixel, P. Giertzuch,
N. Dutler, D. Giardini, HR. Maurer, M. Saar, S. Low, S. Wiemer, T. Driesner




Grimsel ISC: field scale hydraulic stimulations

How do we create an efficient heat exchanger while keeping induced
seismicity at acceptable levels?

To date, no densely-instrumented stimulation experiments in crystalline rock

Detailed research questions (Amann et al., 2017, Solid Earth):
= How does the transient pressure field propagate in the reservoir during stimulation?

= How does the rock mass deform as a result of rock mass pressurization, fracture
opening and/or slip?

= How does stress transfer inhibit or promote permeability enhancement and
seismicity along neighbouring fractures?

= Can we quantify the transition between aseismic and seismic slip and the friction
models (such as rate-and-state friction) describing slip evolution and induced
seismicity?

= Does hydraulic fracturing induce seismicity and increase permeability?

= How do hydraulic fractures interact with pre-existing fractures and faults and how
can the interaction be controlled?

= How does seismicity evolve along faults and fractures of different orientation?

= Can we quantify the link between spatial, temporal and magnitude distribution and
HM coupled properties of fractures and faults?



Grimsel ISC: field scale hydraulic stimulations

= How do we create an efficient heat exchanaer while keeping induced

Rolf Schmitz (presentation yesterday):

" |9 ENERGY RESEARCH MASTERPLAN 2017-2020 |
" GEOTHERMAL ENERGY

Research topics (examples)

= Properties of rock: rock fluid interaction, cap rock integrity, creation of permeability

» Methods for increasing rock permeability: create optimal heat exchangers and geothermal reservoirs
» High-resolution exploration methods and associated fault architecture

» |ntegrated numerical simulation methods for dynamic flow processes in the subsurface

= Exploration and development methodologies for reservoirs: predictable, reliable, low-cost

» Risk assessment, monitoring, avoidance of induced seismicity, damaging earthquakes

= Subsurface technologies: processes and procedures in-situ, and installation of research infrastructure

» www.energieforschung.ch / www.energy-research.ch / www.recherché-energetique.ch

SCCER SOE ANNUAL CONFERENCE 2017 = ROLF SCHMITZ 5 i

HIVI coupled propertiesS Or Tractures and raults ¢




ISC experiment at the Grimsel Test Site
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Procedure and time-line

Aug. 2015 — Nov. 2016

Pre-Stimulationsphase

Seismic network
* regional scale
+ tunnel scale

Stress measurements

Drilling

Characterization

* geophysical borehole logs

* hydraulic & thermal Tests

* geophysical charac. (GPR,
active seismics)

* tracer Tests (dye tracer and
nanotracer)

Monitoring boreholes
+ strain and tilt

* pore pressure

* temperature

* micro-seismics

Dec. 2016 — May 2017

Stimulationsphase

Stimulation

* stimulation of existing shear
zone

* hydraulic Fracturing in massive
rock

* shut-in phases

Monitoring

* pressure und flow rates in
active borehole

* pressurein passive borehole

* micro-seismicity in tunnels and
boreholes

* pressure and temperature in
boreholes

* tilt at the tunnel surface

Last slide of last years presentation

Post-Stimulationsphase

Characterization

+ geophysical boreholes log
(OPTV, electrical resistivity,
spectral gamma etc.)

* hydraulictest in boreholes and
between boreholes (storativity

and transmissivity changes)
* tracer Tests (dye tracer und
nanotracer)
* active seismic tests and GPR

between boreholes and tunnels

Preparation of circulation phase

* boreholes

+ completion of boreholes with
temperature sensors

¢ |nstallation multi-packer system
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Characterization

= Geological model
based on
= Tunnel mapping
= Cores

= Televiewers in
boreholes

= Geophysical borehole
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= GPR imaging
= seismic tomography TN T |

= Hydraulic : 1
characterization (e.g.,

DNA, heat and salt
tracers)
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Stress measurements

Overcoring

Main hole
9=116

————

CSIRO or USBM Cell

1

Measurement cable
\— Pilot hole

Stress ¢=38mm

relaxation
'_\?‘E:l

Y
\— Overcoring

= Important to
combine
overcoring and HF

= Anisotropy needs
to be considered

= Decrease of stress
approaching
fracture zone

SBH15.004

LLl=02 @ HF & HTPF
s USBM
CSIRO

INJ15.001

N/’ sBH15.003

SBH15.001

Hydraulic fracturing (HF)

T To surface

Shut-in tool

Pressure transducer

in the plane normal to the
i principal stress
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= USBM probe
« CSIRO Hi cell

@ Hydraulic fractures
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Krietsch et al., 2017
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Micro-seismicity during hydraulic fracturing

", a) SBH4, map view _¢) SBH3, map view
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Permeability change due to hydraulic fracturing

= Pure HF not expected to change permeability or induce seismicity
= HF tests show 100-1000 times increase in injectivity and significant

seismicity
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Flow rate [I/min]

Hydraulic stimulations

Hydo-shearing (Feb 2017) Hydraulic fracturing (May 2017)

= Injection into existing structures = Injection into intact rock
= |nduce slip by utilizing shear stress = Creation new fractures
Cycle 2.2:
Cycle 2.1: Fracture
Fracture propagation
Cycle 1: propagation (continuous - Cycle3:
Cycle 1.2: Breakdown (cyclic pumping)  pumping) final injectivity and
jacking pressure 100\ /%6_05_2015 jacking pressure .
Cycle 1.1: Cycle 2: ~ Cycle3: \ —pompeal
initial injectivity, Stimulation final injectivity and 80 ~ -PimiMPal |
breakdown of rock jacking pressure T =
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Experiment 2,
HS4 9 Feb 2017
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Stimulation overview

Injected Initial Trans. Final Trans. Change Detected
Borehole  Test  Structure : 2 2 :
Volume [lit] [m*/s] [m°/s] in Trans. Events
MHF#1 7.9 3.8E-13 1.5E-10 380 @ 1161
SBH3 MHF#2 10 3.2E-12 21E-10 70 482
MHF#3 10.4 2.2E-12 5.0E-12 2 274
MHF#4 10.9 1.9E-12 1.1E-10 60 - 2258
MHF#5 9.7 5.9E-13 8.7E-13 2 1692
SBH4 MHF#6 9.1 2.2E-12 7.0E-11 30 772
MHF#7 11.9 3.1E-12 2.2E-10 70 406
HTPF#1 S3.1 28.8 3.8E-12 9.1E-10 240 253
HS#2 ©1.3 797 2.5E-09 1203
HS#3 S1.2 831
HS#4 S3.1 1253
HS#5 S3.2 1211
INJ1 HS#8 S1.1 1258
HF#1 971
HF#2 816
HF#3 893
HF#5 1235
HS#1 S1.3 982
INJ2 HF#6 S1.3 943
HF#8 1501

/

Mini-fracs

Hydro-shearing

/

Hydro-fracturing
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Stimulation overview
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Seismic monitoring

- Accelerometer

JOSue®s0zald

Tunnel wall
Sensors

E Tunnel network at GTS

1 Sub-vertical shear zone S1 (striking
““ North-East South-West)

1 Sub-vertical shear zone S3 (striking
“* East-West)

\ Injection borehole

/' Monitoring borehole

‘ Acoustic emission receiver
‘ Calibrated accelerometer

@ seismic borehole source

t 40m | Q Hammer in tunnel

« 32-channel triggered system

i » 32-channel continuous recording system

Boreholef§ « 200 kHz sampling rate

prezosensor | 13




Seismic monitoring

= Traffic light system not triggered
= Live detection and visualization

of seismicity
= >20.000 events detected

= Detailed location and
magnitude analysis to follow
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Deformation monitoring

Strain Ape
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Deformation monitoring
borehole FBS1



Pressure monitoring
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Flow rate [l/min]

Active seismic monitoring

Systematic p-wave travel time changes during stimulation

Using travel time changes to invert for p-wave 3D velocity change

N
=}
T

Injection pressure
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Injection pressure
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)
T

30m

! Tunnel network at GTS

Sub-vertical shear zone S1 (striking
North-East South-West)
Sub-vertical shear zone S3 (striking
East-West)

\ Injection borehole
Monitoring borehole
‘ Acoustic emission receiver
‘ Calibrated accelerometer

@ seismic borehole source

0 Hammer in tunnel
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Active seismic monitoring

= Systematic p-wave travel time changes during stimulation
= Using travel time changes to invert for p-wave 3D velocity change
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Strain-Avelocity FBS3

Active seismic monitoring |
T 0.8

= Strong correlation between strain §0j4
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Active seismic monitoring 1 St vsiocty F553

o
o

o
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= Strong correlation between strain
measurements and inverted
change in seismic velocity
(slowness)

= Even better correlation with - |
pressure monitoring data S sanw 0

= This might open possibilities to
non-intrusively measure pressure "
propagation and stress ‘
pertubations
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100m Bedretto Experiment

Bedretto experiment

1?/

A

ISC

Boundary conditions controlled

Lab Shear experiment |
experiment 1m/

O.lm’
— v < >

—
0.1m im 20m 100m

100m

20m|

Im

< >

- Testbed for stimulation techniques, heat storage, ...
- Open for project proposals from SCCER-SoE and external partners
2> ..
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Bedretto project
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= Construction to start soon
= First experiments next year



Test bed may provide great opportunities...

Evaluation and Demonstration of Zonal Isolation Techniques|

A1~150m A2 ~150m
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Collaborations and external partners welcome!
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Conclusions & Outlook

= Grimsel ISC project
= Experiments successfully completed

= Variable stimulation response, with permeability increase between
1 and >1000

= [nitial processing shows high quality and versatility of data
= |deas and collaboration for data processing welcome!

= Bedretto laboratory

= [nfrastructure development within coming months
= |deas and proposals for experiments welcome!
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Thank you for your attention

ETH:zurich




