ETHzürich

Grimsel In-situ Stimulation and Circulation experiment: First results SCCER Annual meeting 14 – 15.09.2017, Birmensdorf, Switzerland

J. Doetsch, F. Amann, V. Gischig, M. Jalali, H. Krietsch, B. Valley, C. Madonna, M. Nejati, M. Klepikova, K. Evans, A. Kittlilä, L. Villiger, B. Brixel, P. Giertzuch, N. Dutler, D. Giardini, HR. Maurer, M. Saar, S. Löw, S. Wiemer, T. Driesner

Grimsel ISC: field scale hydraulic stimulations

- How do we create an efficient heat exchanger while keeping induced seismicity at acceptable levels?
- To date, no densely-instrumented stimulation experiments in crystalline rock
- Detailed research questions (Amann et al., 2017, Solid Earth):
 - How does the transient pressure field propagate in the reservoir during stimulation?
 - How does the rock mass deform as a result of rock mass pressurization, fracture opening and/or slip?
 - How does stress transfer inhibit or promote permeability enhancement and seismicity along neighbouring fractures?
 - Can we quantify the transition between aseismic and seismic slip and the friction models (such as rate-and-state friction) describing slip evolution and induced seismicity?
 - Does hydraulic fracturing induce seismicity and increase permeability?
 - How do hydraulic fractures interact with pre-existing fractures and faults and how can the interaction be controlled?
 - How does seismicity evolve along faults and fractures of different orientation?
 - Can we quantify the link between spatial, temporal and magnitude distribution and HM coupled properties of fractures and faults?

. . .

Grimsel ISC: field scale hydraulic stimulations

How do we create an efficient heat exchanger while keeping induced Rolf Schmitz (presentation yesterday): O **ENERGY RESEARCH MASTERPLAN 2017–2020** GEOTHERMAL ENERGY h? **Research topics** (examples) Properties of rock: rock fluid interaction, cap rock integrity, creation of permeability Methods for increasing **rock permeability**: create optimal heat exchangers and geothermal reservoirs High-resolution **exploration methods** and associated fault architecture Integrated numerical **simulation methods** for dynamic flow processes in the subsurface Exploration and development methodologies for reservoirs: predictable, reliable, low-cost Risk assessment, monitoring, avoidance of induced seismicity, damaging earthquakes Subsurface technologies: processes and procedures in-situ, and installation of research infrastructure www.energieforschung.ch / www.energy-research.ch / www.recherché-energetique.ch 5 SCCER SOE ANNUAL CONFERENCE 2017 • ROLF SCHMITZ

HIM coupled properties of fractures and faults?

ISC experiment at the Grimsel Test Site

Last slide of last years presentation

Procedure and time-line

Aug. 2015 – Nov. 2016

Dec. 2016 – May 2017

Pre-Stimulationsphase

Seismic network

- regional scale
- tunnel scale

Stress measurements

Drilling

Characterization

- geophysical borehole logs
- hydraulic & thermal Tests
- geophysical charac. (GPR, active seismics)
- tracer Tests (dye tracer and nanotracer)

Monitoring boreholes

- strain and tilt
- pore pressure
- temperature
- micro-seismics

Stimulationsphase

Stimulation

- stimulation of existing shear zone
- hydraulic Fracturing in massive rock
- shut-in phases

Monitoring

- pressure und flow rates in active borehole
- pressure in passive borehole
- micro-seismicity in tunnels and boreholes
- pressure and temperature in boreholes
- tilt at the tunnel surface

Post-Stimulationsphase

Characterization

- geophysical boreholes log (OPTV, electrical resistivity, spectral gamma etc.)
- hydraulic test in boreholes and between boreholes (storativity and transmissivity changes)
- tracer Tests (dye tracer und nanotracer)
- active seismic tests and GPR between boreholes and tunnels

Preparation of circulation phase

- boreholes
- completion of boreholes with temperature sensors
- Installation multi-packer system

Circulationsphase

Sept20077-eed20077

Circulation

- cold water injections
- warm water injections

Monitoring

- induced micro-seismicity
- thermal break-trough
- thermo-elastic strains and tilt
- pore pressure changes
- temperature in reservoir

Characterization

- Geological model based on
 - Tunnel mapping
 - Cores
 - Televiewers in boreholes
 - Geophysical borehole logging
 - GPR imaging
 - seismic tomography
- Hydraulic characterization (e.g., DNA, heat and salt tracers)

ETHzürich

Stress measurements

Hydraulic fracturing (HF)

- Important to combine overcoring and HF
- Anisotropy needs to be considered
- Decrease of stress approaching fracture zone

Krietsch et al., 2017

Micro-seismicity during hydraulic fracturing

Gischig et al., 2017

Permeability change due to hydraulic fracturing

- Pure HF not expected to change permeability or induce seismicity
- HF tests show 100-1000 times increase in injectivity and significant seismicity

Jalali et al., 2017

Hydraulic stimulations

Hydo-shearing (Feb 2017)

- Injection into existing structures
- Induce slip by utilizing shear stress

Hydraulic fracturing (May 2017)

- Injection into intact rock
- Creation new fractures

Stimulation overview

Borehole	Test	Structure	Injected Volume [lit]	Initial Trans. [m²/s]	Final Trans. [m²/s]	Change in Trans.	Detected Events	
SBH3	MHF#1		7.9	3.8E-13	1.5E-10	380	1161	†
	MHF#2		10	3.2E-12	2.1E-10	70	482	
	MHF#3		10.4	2.2E-12	5.0E-12	2	274	
SBH4	MHF#4		10.9	1.9E-12	1.1E-10	60	2258	Mini-fracs
	MHF#5		9.7	5.9E-13	8.7E-13	2	1692	
	MHF#6		9.1	2.2E-12	7.0E-11	30	772	
	MHF#7		11.5	3.1E-12	2.2E-10	70	406	↓
	HTPF#1	S3.1	28.8	3.8E-12	9.1E-10	240	253	·
INJ1	HS#2	S1.3	797	2.5E-09	2.2E-07	90	1203	↑
	HS#3	S1.2	831	4.8E-10	2.3E-07	490	314	
	HS#4	S3.1	1253	1.2E-07	1.2E-07	1	5606	Hydro-shearing
	HS#5	S3.2	1211	1.2E-08	5.5E-08	5	2452	
	HS#8	S1.1	1258	2.8E-10	7.5E-08	270	3703	
	HF#1		971	2.9E-13	7.5E-10	2550	N/A	↑ /
	HF#2		816	4.2E-13	4.0E-10	950	N/A	Hydro-fracturing
	HF#3		893	3.8E-13	4.5E-10	1190	N/A	
	HF#5		1235	1.5E-13	6.1E-11	420	N/A	↓ /
INJ2	HS#1	S1.3	982	8.3E-11	1.5E-07	1850	560	• /
	HF#6	S1.3	943	4.0E-10	1.7E-09	4	104	
	HF#8		1501	3.1E-13	1.2E-10	165	362	

Stimulation overview

| 12

ETH zürich

Seismic monitoring

- 32-channel triggered system
- 32-channel continuous recording system
- 200 kHz sampling rate

Seismic monitoring

- Traffic light system not triggered
- Live detection and visualization of seismicity
- >20.000 events detected
- Detailed location and magnitude analysis to follow

Deformation monitoring

Longitudinal strain with fibre-optic sensors 60 FBG sensors and distributed strain sensing cable in 3 boreholes

Pressure monitoring

- Systematic p-wave travel time changes during stimulation
- Using travel time changes to invert for p-wave 3D velocity change

- Systematic p-wave travel time changes during stimulation
- Using travel time changes to invert for p-wave 3D velocity change

 Strong correlation between strain measurements and inverted change in seismic velocity (slowness)

Time of day

- Strong correlation between strain measurements and inverted change in seismic velocity (slowness)
- Even better correlation with pressure monitoring data
- This might open possibilities to non-intrusively measure pressure propagation and stress pertubations

0.4

0.2

-0.2

0

100

200

300

Pressure [kPa]

PRP1-2 PRP1-3

PRP2-1 PRP2-2

PRP3-1 PRP3-2 SBH4 INJ2

500

400

100m Bedretto Experiment

Bedretto experiment

 \rightarrow Testbed for stimulation techniques, heat storage, ...

Open for project proposals from SCCER-SoE and external partners
...

ETHzürich

Bedretto project

Test bed may provide great opportunities...

Collaborations and external partners welcome!

Conclusions & Outlook

- Grimsel ISC project
 - Experiments successfully completed
 - Variable stimulation response, with permeability increase between 1 and >1000
 - Initial processing shows high quality and versatility of data
 - Ideas and collaboration for data processing welcome!
- Bedretto laboratory
 - Infrastructure development within coming months
 - Ideas and proposals for experiments welcome!

ETH zürich

Thank you for your attention