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 How do we create an efficient heat exchanger while keeping induced 

seismicity at acceptable levels?

 To date, no densely-instrumented stimulation experiments in crystalline rock 

 Detailed research questions (Amann et al., 2017, Solid Earth):

 How does the transient pressure field propagate in the reservoir during stimulation? 

 How does the rock mass deform as a result of rock mass pressurization, fracture 

opening and/or slip? 

 How does stress transfer inhibit or promote permeability enhancement and 

seismicity along neighbouring fractures? 

 Can we quantify the transition between aseismic and seismic slip and the friction 

models (such as rate-and-state friction) describing slip evolution and induced 

seismicity?

 Does hydraulic fracturing induce seismicity and increase permeability?

 How do hydraulic fractures interact with pre-existing fractures and faults and how 

can the interaction be controlled?

 How does seismicity evolve along faults and fractures of different orientation?

 Can we quantify the link between spatial, temporal and magnitude distribution and 

HM coupled properties of fractures and faults?

 …

Grimsel ISC: field scale hydraulic stimulations

2



|

 How do we create an efficient heat exchanger while keeping induced 

seismicity at acceptable levels?

 To date, no densely-instrumented stimulation experiments in crystalline rock 

 Detailed research questions (Amann et al., 2017, Solid Earth):

 How does the transient pressure field propagate in the reservoir during stimulation? 

 How does the rock mass deform as a result of rock mass pressurization, fracture 

opening and/or slip? 

 How does stress transfer inhibit or promote permeability enhancement and 

seismicity along neighbouring fractures? 

 Can we quantify the transition between aseismic and seismic slip and the friction 

models (such as rate-and-state friction) describing slip evolution and induced 

seismicity?

 Does hydraulic fracturing induce seismicity and increase permeability?

 How do hydraulic fractures interact with pre-existing fractures and faults and how 

can the interaction be controlled?

 How does seismicity evolve along faults and fractures of different orientation?

 Can we quantify the link between spatial, temporal and magnitude distribution and 

HM coupled properties of fractures and faults?

 …

Grimsel ISC: field scale hydraulic stimulations
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Rolf Schmitz (presentation yesterday):
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ISC experiment at the Grimsel Test Site
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Procedure and time-line
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Aug. 2015 – Nov. 2016 Dec. 2016 – Mar. 2017 Apr. 2017 – end 2017Dec. 2016 – May 2017 Sept. 2017 – end 2017

Last slide of last years presentation
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 Geological model 

based on

 Tunnel mapping

 Cores

 Televiewers in 

boreholes

 Geophysical borehole 

logging

 GPR imaging

 seismic tomography

 Hydraulic 

characterization (e.g., 

DNA, heat and salt 

tracers)

Characterization

6



|

 Important to 

combine 

overcoring and HF

 Anisotropy needs 

to be considered

 Decrease of stress 

approaching 

fracture zone

Stress measurements
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Overcoring Hydraulic fracturing (HF)

Stress tensor

Krietsch et al., 2017
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Analyzed using

 joint locating

 station corrections

 anisotropic velocity model

 relative locations

Important to validate and constrain 

overcoring results

Micro-seismicity during hydraulic fracturing

Gischig et al., 2017
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 Pure HF not expected to change permeability or induce seismicity

 HF tests show 100-1000 times increase in injectivity and significant 

seismicity 

Permeability change due to hydraulic fracturing
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Jalali et al., 2017
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Hydo-shearing (Feb 2017)

 Injection into existing structures

 Induce slip by utilizing shear stress

Hydraulic fracturing (May 2017)

 Injection into intact rock

 Creation new fractures

Hydraulic stimulations
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Cycle 1.1:

initial injectivity, 

breakdown of rock

Cycle 2:

Stimulation

Cycle 1.2:

jacking pressure

Cycle 3:

final injectivity and 

jacking pressure

Experiment 2,

HS4 9 Feb 2017

time of day [h]

Cycle 1:

Breakdown

Cycle 2.1:

Fracture

propagation

(cyclic pumping)

Cycle 2.2:

Fracture

propagation

(continuous

pumping)

Cycle 3:

final injectivity and 

jacking pressure

flow rate

pressure
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Stimulation overview
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Mini-fracs

Hydro-shearing

Hydro-fracturing
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Stimulation overview
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Seismic monitoring

Borehole

piezosensor

Tunnel wall
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• 32-channel triggered system

• 32-channel continuous recording system

• 200 kHz sampling rate 
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 Traffic light system not triggered

 Live detection and visualization 

of seismicity

 >20.000 events detected

 Detailed location and

magnitude analysis to follow

Seismic monitoring
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Deformation monitoring
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Longitudinal strain with fibre-optic sensors

60 FBG sensors and distributed strain

sensing cable in 3 boreholes
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Pressure monitoring
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A total of 12 pressure observation

intervals to record pressure evolution
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 Systematic p-wave travel time changes during stimulation

 Using travel time changes to invert for p-wave 3D velocity change

Active seismic monitoring

17



|

Active seismic monitoring
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 Systematic p-wave travel time changes during stimulation

 Using travel time changes to invert for p-wave 3D velocity change
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 Strong correlation between strain 

measurements and inverted 

change in seismic velocity 

(slowness)

Active seismic monitoring
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Deformation Change in slowness
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 Strong correlation between strain 

measurements and inverted 

change in seismic velocity 

(slowness)

 Even better correlation with 

pressure monitoring data

 This might open possibilities to 

non-intrusively measure pressure 

propagation and stress 

pertubations

Active seismic monitoring
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100m

100m

100m

100m Bedretto Experiment
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0.1m

0.1m

0.1m

1m

1m

1m

20m

20m

20m

Boundary conditions controlled

Bedretto experiment

Lab 

experiment

Shear experiment

ISC

 Testbed for stimulation techniques, heat storage, …

 Open for project proposals from SCCER-SoE and external partners

 … 
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 Construction to start soon

 First experiments next year

Bedretto project
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Cavern 3*6*100m
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Test bed may provide great opportunities…
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Collaborations and external partners welcome!
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 Grimsel ISC project

 Experiments successfully completed

 Variable stimulation response, with permeability increase between

1 and >1000

 Initial processing shows high quality and versatility of data

 Ideas and collaboration for data processing welcome!

 Bedretto laboratory

 Infrastructure development within coming months

 Ideas and proposals for experiments welcome!

Conclusions & Outlook
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Thank you for your attention


