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Task 4.2 for Energy Economics Group at PSI

• Topic: Future market options of Swiss electricity supply

– Interaction of Swiss electricity system with EU electricity supply

– Scenarios under which the Swiss electricity system, especially hydropower, 
can be profitable

• Tools: Economic electricity models 

– Social-planner optimization (perfect competition model): Electricity 
system model “EU-STEM”  Poster

– Electricity markets: Nash-Cournot equilibrium model “BEM” Poster

– Dispatch of hydropower under uncertainty

• Analytical modeling

• Numerical modeling (Mean-risk models using multistage-stochastic 
programming)
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EU-STEM: European Swiss TIMES electricity model 
BEM: Bi-level electricity market model

1.

2.



Modeling of electricity market prices

• Why? Flexible stored hydro power can profit from electricity 
price peaks (pumped-hydro also from spreads)   

• How to model the price peaks, i.e., price volatility? 
– Econometric time series estimation, e.g. with a fundamental model:   

Electricity price ~ Gas price + Demand + CO2 price + etc.

• usually no detail on generation technology

– Technology-detailed model of supply cost curve

• data intensive (e.g. all plants with outages), commercial software 
exists, usually perfect-competition assumption with a mark-up 

• Design principle of BEM model: Balancing modeled details of 
technologies and markets. Relevant for SCCER-SoE:
– Price volatility should be captured 

– Technologies should be represented 
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Optimization 
Player N

Optimization 
Player 2

Optimization 
Player 1

Bi-level Electricity-Market model (BEM)

• General framework to understand price-formation and investments
• Investment and subsequent production decision of several power producers
• Producers can influence prices by withholding investment or production capacity 

in certain load periods 
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• Bi-level Nash-Cournot game; Multi-leader multi-follower-game, EPEC
• BEM can run in different modes: (i) Investment and production decision on same 

level (ii) Single scenario (deterministic) (iii) Social welfare maximization 



Modeling competitive behavior
(market power)

• Transparency measures now imposed by regulators reduce 
possibility of market power on wholesale power markets
– Market power := Deliberate back-holding of generation capacity, 

yielding a price higher than marginal cost of merit-order [Cournot, 
1838] 

• Assumption in BEM: Price effects of market power and of other 
scarcity effects are indistinguishable
– E.g.: Temporary nuclear shut-down  Effect as “as-if” market power
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BEM model  (Estimation mode):
• Input: Hourly historical prices, 

market volumes , generation  
(for each country)

 Calibration of «as-if» market 
power parameter 
(for each country and 
representative load period)

BEM model (Normal mode):
• Output: prices, volumes, 

generation by technology

“as-if” market 
power 

parameters



Bi-level Electricity-Market model (BEM)

• Transmission constraints between players (linear DC flow model)

• Wholesale consumers represented by demand-price elasticity. Two 
markets in each node: (i) Spot-market, (ii) Demand cleared OTC (inelastic)

• Hourly trading: A typical day in the future for 4 season (4*24 load periods)

• Base configuration: Players are countries

• Input: CAPEX, OPEX of technologies, seasonal availabilities etc.

27. September 2017 page 6

(supported by BFE-
EWG) 2015-17

Austria

Italy

France Switzerland

Germany

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

Cumulative variable costs

MW (avg. available capacity)

E
U

R
/M

W
h

 0 20000 40000 60000 80000

AT

DE

FR

IT

CH



Model validation: Competitiveness & 
thermal plant constraints 
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Volatility of hourly price: 
(example: Winter)

DE-WI Scenario with  average wind & solar 
generation

DE CH

2016 (EPEX) 54% 25%

Social welfare 
maximization 
(without thermal 
constraints)

0% 2%

Social welfare 
maximization

13% 10%

Competitive model 
(without thermal 
constraints)

25% 26%

Competitive model 35% 33%



Model validation: Switzerland
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Model validation: Switzerland



Test: Immediate nuclear switch-off in 
Switzerland?

Result:
• No new investments (enough existing capacity in neighboring 

countries) 
• CH imports more: 0.4 GW/h (avg.) ↗ 3 GW/h
• Social Welfare (ove r all countries, markets): −10% 
• Producer’s profit: CH: −9%; avg. other countries: +22%   
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Secondary ancillary service

• Secondary reserve power: Fully available after 15min.
• Approx. +/- 400 MW in Switzerland in 2016 (causes: wind + 

solar, demand, hourly step schedule in Europe)
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• Ancillary service reduces the flexibility of operation: What is 
tradeoff between locked-in and free production?



Secondary ancillary service: Contract 
details

• Payment for capacity: TSO pays producers (pay-as-bid auction)
• Payment for energy:

– TSO pays producer for up-regulation energy (at 120% market price)
– Producer pays TSO for down-regulation energy (at 80% market price)
– ≈1.6 Rp./MWh (in 2016) << capacity payment
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• Producer having capacity umax provides power ± ua (MW) over 
a week; producer sells umin + ua at the market



Stochastic model of secondary service

Simplifications:
• Single-period (steady-state) 
• Inflow is an average (added to the usable water level); lower bound on 

water level holds only in expectation
• No technical lower bounds on turbine 
• Energy payment neglected
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S: Spot electricity price, random variable (EUR/MW)

u(S): Free dispatch as function of electricity price S

ua: Set-point of ancillary service, agreed with TSO (MW)

pa: Total payments for providing ancillary service (EUR/MW)

l: Usable water (= water level + inflow in expectation) (MWh)

umax
+: Turbine capacity (MW)

E[.]:    Expectation (= average over all electricity price scenarios)

Profit maximization problem: Explicit solution:

1_{S>q}: Indicator function: If spot price S is higher or equal than q, then 1, else 

0. Hence, if 1, then free production is possible.

q: Marginal value of the water constraint

m: Median of electricity spot price distribution

E[|S-m|]: Mean absolute deviation of spot price distribution

P[S ≤ q]: Probability that spot price S is lower or equal q

Use of residual free capacity for market:
Bang-Bang control (either turbine at full or at zero capacity)

Condition to go into ancillary service:
Capacity payment > Mean absolute deviation from median of 
spot price (MAD), a measure of price volatility



Auction results:  Ancillary service
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MAD := Mean Absolute Deviation from Median



SDL profitable >(strictly) MAD of spot price
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Outlook of economic modeling in 
Phase II

• Further development of BEM model

– BFE-EWG project: Policy scenarios (jointly with University 
of Zurich)

– VSE-PSEL project: Price scenarios

– Data harmonization: University of Basel, SCCER Joint 
Activity on Scenarios & Modeling

• Stochastic hydropower modeling

– BFE-EWG project: Capacity markets etc. (jointly with 
Karlsruhe Institute of Technology)
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BACKUP SLIDES:
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Model validation: Competitiveness & 
thermal plant constraints 
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Bi-level modeling: Influence of market power
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Example: Players are whole countries (i.e., production portfolio): 

Switzerland  (CH) and neighboring countries (DE, FR, IT, AT)

Test influence of country’s market power on spot-market prices and volumes

• FR cannot exert market-power because of flat (nuclear) merit-order curve 

• DE and IT have market-power because of non-flat merit-order curve (e.g. gas in IT)

• CH exports more

perfect

competition
DE DE & FR all

players that are allowed to have 

market power on 2nd level

(on 1st level: all players)

none



Impact of dispatch constraints of 
thermal generation

Page 21
Results from Social Welfare maximization , Base scenario



Exact Solutions of Hydropower Dispatch
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• Pumped-storage optimal-dispatch should consider: Stochastic spot prices & water inflow

• Usual approach is to use large-scale numerical optimization models

• Alternative: Simplified models with analytical solutions  insight in optimal dispatch

• Feature-sets possible: (i) Expected profit maximization (over price scenarios),  (ii) expected 

constraints on water level, (iii) several reservoirs & time-steps, (iv) ancillary service

M. Densing (2014): Pumped-storage hydropower optm.: Effects of several reservoirs and of ancillary services, IFORS 2014

M. Densing, T. Kober (2016): Hydropower dispatch: Auxiliary services, several reservoirs and continuous time (preprint)

Optimal dispatch is a “bang-bang”  control

(using optimal control theory [LaSalle 1959]):

Ancillary service (“Systemdienstleistung”):

Storage-plant operator must decide:

• Either: Sell energy freely on spot market

• Or: Sell production capacity as ancillary 

service to TSO (i.e. operator loses freedom)

The condition is (with some simplifications):

p≥ 𝔼 𝑆 −𝑚
• p: reimbursement from TSO for ancillary 

service

• S: Spot price

• m: median of spot price

Hence: If volatility is high, then go to spot market

 for details, see poster

Absolute mean deviation of spot price 
(“Volatility” of electricity market price)



Solar and Wind
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2012–2014, all seasons

Hourly average per season and per year:
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Wind+Solar Scenario Generation
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PCA of the multivariate random vector of hourly solar and wind

availability (dimension: 48 = 24 + 24). Example data: DE, spring

(Mar+Apr+May), 2012–2014:
Variance of Principal Components
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Wind+Solar Scenarios using 1st and 2nd
PCA factorFactor model with PCA:

X = ΛF + ε, ΛT Λ = 1, F ≈ ΛT X , with

random vectors X ,ε∈Rp, F ∈Rk, k < p = 48; F not correlated.

← 8 ·8 = 64 scenarios of

(k = 2) first factors in F

• Factors assumed to be

normally distributed →

discretization by binomial

distribution

• Raw data gives best

results (i.e. w/o logX , 

X −meanX ) →

scenarios with negative

values must be ignored
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Model Input (i)

27.09.2017 Global Observatory of Electricity Resources 26



Game Theory: Prisoner’s dilemma 

• The decision leading to (2, 2) is a Nash equilibrium.
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Player 2

invest
do

nothing

Player 1

invest (3,3) (1,4)

do 
nothing

(4,1) (2,2)

• Example of non-cooperative game: 

 (x, y)  denotes reward x of player 1 and reward y of player 2 under a 

certain decision of the players

• Def. Nash Equilibrium: 

A player cannot improve given the decisions of all other players are fixed



Exact Solutions of Hydropower Dispatch
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• Pumped-storage optimal-dispatch should consider: Stochastic spot prices & water inflow

• Usual approach is to use large-scale numerical optimization models

• Alternative: Simplified models with analytical solutions  insight in optimal dispatch

• Feature-sets possible: (i) Expected profit maximization (over price scenarios),  (ii) expected 

constraints on water level, (iii) several reservoirs & time-steps, (iv) ancillary service

M. Densing (2014): Pumped-storage hydropower optm.: Effects of several reservoirs and of ancillary services, IFORS 2014

M. Densing, T. Kober (2016): Hydropower dispatch: Auxiliary services, several reservoirs and continuous time (preprint)

Optimal dispatch is a “bang-bang”  control

(using optimal control theory [LaSalle 1959]):

Ancillary service (“Systemdienstleistung”):

Storage-plant operator must decide:

• Either: Sell energy freely on spot market

• Or: Sell production capacity as ancillary 

service to TSO (i.e. operator loses freedom)

The condition is (with some simplifications):

p≥ 𝔼 𝑆 −𝑚
• p: reimbursement from TSO for ancillary 

service

• S: Spot price

• m: median of spot price

Hence: If volatility is high, then go to spot market

 for details, see poster

Absolute mean deviation of spot price 
(“Volatility” of electricity market price)



Meta-Analysis (Example: Supply Mix 2050)
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Goals of meta-analysis of a scenarios over heterogeneous studies
1. Selection of representative scenarios, which can be used for:

• Simplified view for policy makers
• Input to other models that require low-dimensional data (e.g. large economic-wide models 

with many other data inputs, to keep model sizes small, or stochastic scenario generation)
2. Removal of “superfluous” scenarios: “Is a scenario(-result) “inside” other scenarios?”
3. Quantify extremality of a scenario result “Does a new scenario add variety?”

Year 2050 has 
relatively low annual 
imports across 
scenarios (more 
imports in year 2030; 
see report)

M. Densing, S. Hirschberg (2015): Review of 
Swiss Electricity Scenarios 2050



Meta-Analysis with a Distance Measure
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Example for a supply mix of only 2 technologies:

Distance of a scenario to the other scenarios

• d1 = Distance of scenario x1 to convex hull of all other scenarios
• Scenario x6 can be represented as a convex combination of other 

scenarios (d6 = 0)

Supply mix of BFE’s scenario
POM+C (Political measures + 
central gas-powered plant) is a 
perfect convex combination of 
other scenarios
 Possible modelling issue
 Scenario may be considered 

superfluous

M. Densing, E. Panos & S. Hirschberg (2016): Meta-analysis of energy scenario studies: Example of 
electricity scenarios for Switzerland, The Energy Journal, 109, 998-1015 

Minimal set of representative Scenarios:
• BFE WWB + C: business-as usual scenario with new gas plants
• BFE POM + E: renewable scenario with relatively low demand
• PSI-elc, WWB + Nuc: scenario with new nuclear plants and 

relatively low demand

The three representative scenarios can be interpreted as 
major, opposite directions of energy policies in Switzerland.


