

SWISS COMPETENCE CENTER for ENERGY RESEARCH SUPPLY of ELECTRICITY

Modeling of Electricity Markets and Hydropower Dispatch

Task 4.2: Global observatory of electricity resources

Martin Densing, Evangelos Panos Energy Economics Group, PSI 14.9.2017 In cooperation with the CTI

Energy funding programme Swiss Competence Centers for Energy Research

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Commission for Technology and Innovation CTI

Task 4.2 for Energy Economics Group at PSI

- Topic: Future market options of Swiss electricity supply
 - Interaction of Swiss electricity system with EU electricity supply
 - Scenarios under which the Swiss electricity system, especially hydropower, can be profitable
- Tools: Economic electricity models
 - Social-planner optimization (perfect competition model): Electricity system model "EU-STEM" → Poster
 - Electricity markets: Nash-Cournot equilibrium model "BEM" \rightarrow Poster
 - **P**ispatch of hydropower under uncertainty
 - Analytical modeling
 - Numerical modeling (Mean-risk models using multistage-stochastic programming)

EU-STEM: European Swiss TIMES electricity model BEM: Bi-level electricity market model

2.

Global Observatory of Electricity Resources

Modeling of electricity market prices

- Why? Flexible stored hydro power can profit from electricity price peaks (pumped-hydro also from spreads)
- How to model the price peaks, i.e., price volatility?
 - Econometric time series estimation, e.g. with a fundamental model:
 Electricity price ~ Gas price + Demand + CO2 price + etc.
 - usually no detail on generation technology
 - Technology-detailed model of supply cost curve
 - data intensive (e.g. all plants with outages), commercial software exists, usually perfect-competition assumption with a mark-up
- **Design principle of BEM model:** Balancing modeled details of technologies and markets. Relevant for SCCER-SoE:
 - Price volatility should be captured
 - Technologies should be represented

Bi-level Electricity-Market model (BEM)

- General framework to understand price-formation and investments
- Investment and subsequent production decision of several power producers
- Producers can influence prices by withholding investment or production capacity in certain load periods

	Optimization	Optimization	Optimization	Optimization
	Player 1	Player 2	Player 3	Player N
1 st level	Investment	Investment		Investment
(investment	in supply	in supply		in supply
decision)	technologies	technologies		technologies
2 nd level	Quantity	Quantity	Market clearing of TSO	Quantity
(spot market	bidding	bidding	under transmission	bidding
trading)	(4*24hours)	(4*24hours)	constraints (price-taker)	(4*24hours)

- Bi-level Nash-Cournot game; Multi-leader multi-follower-game, EPEC
- BEM can run in different modes: (i) Investment and production decision on same level (ii) Single scenario (deterministic) (iii) Social welfare maximization

Densing, M., Panos, E., Schmedders, K. (2016): Workshop on Energy Modeling, Energy Science Center, ETHZe 4

Modeling competitive behavior (market power)

- Transparency measures now imposed by regulators reduce possibility of market power on wholesale power markets
 - Market power := Deliberate back-holding of generation capacity, yielding a price higher than marginal cost of merit-order [Cournot, 1838]
- Assumption in BEM: Price effects of market power and of other scarcity effects are indistinguishable
 - E.g.: Temporary nuclear shut-down \rightarrow Effect as "as-if" market power

BEM model (Estimation mode):

- Input: Hourly historical prices, market volumes, generation (for each country)
- → Calibration of «as-if» market power parameter (for each country and representative load period)

Bi-level Electricity-Market model (BEM)

- Transmission constraints between players (linear DC flow model)
- Wholesale consumers represented by demand-price elasticity. Two markets in each node: (i) Spot-market, (ii) Demand cleared OTC (inelastic)
- Hourly trading: A typical day in the future for 4 season (4*24 load periods)
- Base configuration: Players are countries
- Input: CAPEX, OPEX of technologies, seasonal availabilities etc.

(supported by BFE-

SCCER

27. September 2017

Model validation: Competitiveness & thermal plant constraints

Price (Germany, winter)

Volatility of hourly price: (example: Winter)

	DE	СН
2016 (EPEX)	54%	25%
Social welfare maximization (without thermal constraints)	0%	2%
Social welfare maximization	13%	10%
Competitive model (without thermal constraints)	25%	26%
Competitive model	35%	33%

DE-WI Scenario with average wind & solar generation

Model validation: Switzerland

Price (Switzerland, summer)

Global Observatory of Electricity Resources

Model validation: Switzerland

Price (Switzerland, summer)

hour of day Global Observatory of Electricity Resources

Test: Immediate nuclear switch-off in Switzerland?

Result:

- No new investments (enough existing capacity in neighboring countries)
- CH imports more: 0.4 GW/h (avg.) **7** 3 GW/h
- Social Welfare (ove r all countries, markets): -10%
- Producer's profit: CH: –9%; avg. other countries: +22%

Secondary ancillary service

- Secondary reserve power: Fully available after 15min.
- Approx. +/- 400 MW in Switzerland in 2016 (causes: wind + solar, demand, hourly step schedule in Europe)

• Ancillary service reduces the flexibility of operation: What is tradeoff between locked-in and free production?

Secondary ancillary service: Contract details

 Producer having capacity u_{max} provides power ± u_a (MW) over a week; producer sells u_{min} + u_a at the market

- Payment for capacity: TSO pays producers (pay-as-bid auction)
- Payment for energy:
 - TSO pays producer for up-regulation energy (at 120% market price)
 - Producer pays TSO for down-regulation energy (at 80% market price)
 - ≈1.6 Rp./MWh (in 2016) << capacity payment</p>

Stochastic model of secondary service

Condition to go into ancillary service:

Capacity payment > Mean absolute deviation from median of spot price (MAD), a measure of price volatility

Use of residual free capacity for market:

Bang-Bang control (either turbine at full or at zero capacity)

Profit maximization problem:

$$\max_{u(\cdot),u_a} \mathbb{E} \big[S(u(S) + u_a) \big] + p_a u_a \quad \text{s.t.}$$

$$\mathbb{E}[u(S) - u_a] \ge l,$$

$$u(S) + 2u_a \le u_{\max}^+,$$

$$u(S), u_a \ge 0,$$

- Spot electricity price, random variable (EUR/MW) S:
- u(S): Free dispatch as function of electricity price S
- Set-point of ancillary service, agreed with TSO (MW) U_:
- Total payments for providing ancillary service (EUR/MW) p_a:
- Usable water (= water level + inflow in expectation) (MWh)

 u_{max}^{+} : Turbine capacity (MW)

Expectation (= average over all electricity price scenarios) 27.09.2017

Explicit solution:

$$\hat{U} = \hat{u}(S) = \left(u_{\max}^{+} - 2\hat{u}_{a}\right) \mathbf{1}_{\{S \ge \hat{q}\}}$$
$$\hat{u}_{a} = \left(\frac{1}{2}u_{\max}^{+} - \frac{l - \frac{1}{2}u_{\max}^{+}}{1 - 2\mathbb{P}[S \le \hat{q}]}\right) \mathbf{1}_{\{p_{a} > \mathbb{E}[|S - m|]\}}$$

1 {S>g}: Indicator function: If spot price S is higher or equal than g, then 1, else 0. Hence, if 1, then free production is possible.

- Marginal value of the water constraint q:
- Median of electricity spot price distribution m:
- E[/S-m]]: Mean absolute deviation of spot price distribution
- $P[S \le q]$: Probability that spot price S is lower or equal q

Auction results: Ancillary service

MAD := Mean Absolute Deviation from Median

SDL profitable >_(strictly) MAD of spot price

Figure 3: Ancillarly service u_a as a function of the reimbursement p_a . Parameters: $u_{\text{max}}^+ = 1$; l = 0.8; random variable $S \sim N(10, \sigma = 2.5)$

Outlook of economic modeling in Phase II

- Further development of BEM model
 - BFE-EWG project: Policy scenarios (jointly with University of Zurich)
 - VSE-PSEL project: Price scenarios
 - Data harmonization: University of Basel, SCCER Joint Activity on Scenarios & Modeling
- Stochastic hydropower modeling
 - BFE-EWG project: Capacity markets etc. (jointly with Karlsruhe Institute of Technology)

BACKUP SLIDES:

Model validation: Competitiveness & thermal plant constraints

SCCER SOE

Price (CH, WI)

Global Observator of the tricity Resources

Model validation: Competitiveness & thermal plant constraints

Price (CH, WI)

27.09.2017

hour of day Global Observatory of Electricity Resources

Bi-level modeling: Influence of market power

Example: Players are whole countries (i.e., production portfolio):

Switzerland (CH) and neighboring countries (DE, FR, IT, AT)

 \rightarrow Test influence of country's market power on spot-market prices and volumes

- FR cannot exert market-power because of flat (nuclear) merit-order curve
- **DE** and **IT** have market-power because of non-flat merit-order curve (e.g. gas in IT)
- CH exports more

Impact of dispatch constraints of thermal generation

Exact Solutions of Hydropower Dispatch

- Pumped-storage optimal-dispatch should consider: Stochastic spot prices & water inflow
- Usual approach is to use large-scale numerical optimization models
- Alternative: Simplified models with analytical solutions → insight in optimal dispatch
- Feature-sets possible: (i) Expected profit maximization (over price scenarios), (ii) expected constraints on water level, (iii) several reservoirs & time-steps, (iv) ancillary service

Solar and w	correlation	solar	wind	demand			
	solar	1	-0 <i>.</i> 13	0.45			
	wind	-0.13	1	0.088			
	demand	0.45	0.088	1			

2012-2014, all seasons

Hourly average per season and per year:

Wind+Solar Scenario Generation

PCA of the multivariate random vector of hourly solar and wind availability (dimension: 48 = 24 + 24). Example data: DE, spring (Mar+Apr+May), 2012–2014:

Variance of Principal Components

85% (92%) of variance by principal component 1.+2.(+3.)

Wind+Solar Scenarios using 1st and 2nd PEActoratel with PCA:

 $X = \Lambda F + \varepsilon$, $\Lambda^T \Lambda = 1$, $F \approx \Lambda^T X$, with random vectors $X, \varepsilon \in \mathbb{R}^p$, $F \in \mathbb{R}^k$, k ; <math>F not correlated.

 $\leftarrow 8 \cdot 8 = 64$ scenarios of

- (k = 2) first factors in F
- Factors assumed to be normally distributed → discretization by binomial distribution
- Raw data gives best results (i.e. w/o log X, X mean X) →
 scenarios with negative values must be ignored

Model Input (i)

Game Theory: Prisoner's dilemma

- Example of non-cooperative game:
 - (x, y) denotes reward x of player 1 and reward y of player 2 under a certain decision of the players
- Def. Nash Equilibrium:

A player cannot improve given the decisions of all other players are fixed

Player 2

• The decision leading to (2, 2) is a Nash equilibrium.

Exact Solutions of Hydropower Dispatch

- Pumped-storage optimal-dispatch should consider: Stochastic spot prices & water inflow
- Usual approach is to use large-scale numerical optimization models
- Alternative: Simplified models with analytical solutions → insight in optimal dispatch
- Feature-sets possible: (i) Expected profit maximization (over price scenarios), (ii) expected constraints on water level, (iii) several reservoirs & time-steps, (iv) ancillary service

Meta-Analysis (Example: Supply Mix 2050) SCCER 50E

Goals of meta-analysis of a scenarios over heterogeneous studies

- 1. Selection of representative scenarios, which can be used for:
 - Simplified view for policy makers
 - Input to other models that require low-dimensional data (e.g. large economic-wide models with many other data inputs, to keep model sizes small, or stochastic scenario generation)
- 2. Removal of "superfluous" scenarios: "Is a scenario(-result) "inside" other scenarios?"
- 3. Quantify extremality of a scenario result "Does a new scenario add variety?"

Meta-Analysis with a Distance Measure

- d_1 = Distance of scenario x_1 to convex hull of all other scenarios
- Scenario x₆ can be represented as a convex combination of other scenarios (d₆ = 0)

Minimal set of representative Scenarios:

- BFE WWB + C: business-as usual scenario with new gas plants
- BFE POM + E: renewable scenario with relatively low demand
- PSI-elc, WWB + Nuc: scenario with new nuclear plants and relatively low demand

 \rightarrow The three representative scenarios can be interpreted as major, opposite directions of energy policies in Switzerland.

oly mix of BFE's scenario 1+C (Political measures + ral gas-powered plant) is a ect convex combination of er scenarios Possible modelling issue Scenario may be considered uperfluous

M. Densing, E. Panos & S. Hirschberg (2016): Meta-analysis of energy scenario studies: Example of electricity scenarios for Switzerland, *The Energy Journal, 109,* 998-1015