







SUPPLY of ELECTRICITY



#### Motivation

- Understanding the past to predict the future.
- Planning and operation of hydropower schemes are often tackled with simple objectives.
  - Addressing environmental concerns.
  - Increasing efficiency.
  - Increasing potential.
  - Increasing flexibility.
- Reality can be more complex.
  - Divide between civil engineering and finance / economics.
  - What is the optimal use of the systems we design given real constraints?









#### Motivation

- The main questions to better design and adapt hydropower systems:
  - How do hydropower systems affect the environment around them?
  - What do hydropower systems respond to?
- Isolated, run-of-the-river HPPs are relatively easy to assess.
- If storage is considered, strategy begins to play an important role.
- Pumped-storage adds more complexity to operations.
- Interactions between multiple HPPs are hard to fully understand.
- Often design and adaptation strategy bets on general features:
  - More system capabilities.
  - Better system performances.
  - More flexibility.









# Motivation

- We tried to understand how a complex system deploys its capabilities.
- What is at stake?
  - Operational limitations.
  - Hydrology.
  - Energy markets.
  - Business models.
- Two approaches:
  - A numerical model that captures all of this is extremely hard to achieve.
  - Mining 40 years of daily data and 1 year of sub-daily data of the KWO system.
- We tried to "explain" what drove operations and changes.
  - Understanding the past to predict the future.











# The system

(Further information at http://www.grimselstrom.ch)









#### Methods







- Numerical modelling.
- Goes beyond heuristics.
- RS3+optiprod provide a powerful tool to simulate the future.
- Also limited in a number of ways...
- The business model of the system:
  - Long / medium term contracts.
  - SPOT market.
  - Load balancing.
- Fine operational limitations.







Characterizing hydrology



• Historical and future snow/ice coverage and runoff series from coarse gridded data.





- Visualizing the system
  - Translating a 36 dimension problem (measured series plus time) into something tractable.
  - Sankey plot (ex. average fluxes from 1980 to 2014).
  - Outlier operation modes





Fuhren 18.3Mm³/yr

28.6Mm<sup>3</sup>/yr

Leimboden

33.1Mm³/yr





 Machine learning could help identifying what affects the system.

- Hydrology is as important as the rest.
- Information on storage does not help predicting operations.







| Inputs                | LR    | SVC <sub>lin</sub> | SVC <sub>RBF</sub> | RF    | Mean  | Best  |
|-----------------------|-------|--------------------|--------------------|-------|-------|-------|
| Random                | 30.2% | 30.2%              | 30.2%              | 30.3% | 30.2% | 30.3% |
| Storage               | 30.3% | 30.2%              | 30.2%              | 30.7% | 30.4% | 30.7% |
| Day of week (DOW)     | 30.2% | 30.2%              | 30.2%              | 31.5% | 30.6% | 31.5% |
| Long-term trend (LTT) | 32.5% | 34.3%              | 34.3%              | 37.7% | 34.7% | 37.7% |
| Yearly cycle (DOY)    | 30.2% | 30.2%              | 30.2%              | 42.7% | 33.3% | 42.7% |
| LTT and DOY           | 31.6% | 34.2%              | 35.2%              | 40.7% | 35.4% | 40.7% |
| LTT, DOY, and storage | 31.8% | 34.4%              | 38.4%              | 39.6% | 36.0% | 39.6% |
| All but hydrology     | 35.7% | 38.7%              | 42.1%              | 41.0% | 39.4% | 42.1% |
| Hydrology             | 43.2% | 43.3%              | 43.2%              | 43.7% | 43.4% | 43.7% |
| All                   | 52.4% | 53.4%              | 54.0%              | 52.3% | 53.0% | 54.0% |
| All but storage       | 53.6% | 54.7%              | 55.0%              | 55.1% | 54.6% | 55.1% |















- The influence of the market.
- Synthetic series of prices from 1980 onwards.
  - How well would historical operations from 1980 to the present adapt to today's market?
- Three metrics analyzed the changes in the system.
  - Effectiveness: how much of the system potential is being used (no water and no storage limitations).
  - Efficiency: how "well" are the water resources being used (no storage limitations).
  - Energy selling price.
- The system seemed to perform increasingly worse.
  - This did not make sense!







- ... unless intra-daily operations were considered.
- Increasing intra-daily price fluctuations reveal the sense of the systems' adaptations.
- Taking advantage of hydro's competitive advantages, intra-daily price variations are a major driving force behind operations.



- Not only climate change but also future energy markets will play a major role in the hydropower sector.
- For an informative assessment sub-daily analyses (and data) are extremely important.











#### Contributions

Improvement of numerical simulations models:

- Routing System 3 and

Optiprod (http://hydrique.ch/).

 Code for the visualization of complex bydronower systems

hydropower systems.

 Code for the downscaling of meteorological data.



54.3Mm<sup>3</sup>/yr

486Mm<sup>3</sup>/vr

https://github.com/JosePedroMatos/FlexSTOR





764Mm³/yr





316m<sup>3</sup>/s

1.51m<sup>3</sup>/s

Bozsu canal 88.7m³/s and others

#### Main outcome

- Insight into what drives complex hydropower systems.
- Sharing of tools to understand hydropower systems.
- Contribution to enlarge the traditional vision of dam engineers, which may at times downplay the role of energy markets.

# Thank you

