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Motivation

Fluid-saturated fractured porous rocks

Seismic wave
propagation ⇒

Fluid pressure
diffusion

at mesoscale ⇒

Attenuation
and velocity
dispersion

Boundary conditions Biot’s equations Output
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geometric + mechanical + hydraulic properties

of fracture networks in rock formations

Applications

- geothermal energy production

- hydrocarbon exploration
- nuclear waste storage
- CO2 sequestration Heat source
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Fractures as fluid pathways
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Hydro-mechanical coupled models

Homogeneous	macroscale:
visco-elastic	model

Heterogenous mesoscale:
large	contrast

in	material	properties
(permeability,	stiffness,	…)

Upscaling

Representative	
Elementary	Volume

Adapted from Jänicke et al. (2015)
  

Numerical Upscaling Experiments

periodic: displacement, stress, fluid 
pressure and the flux of the pore fluid

fixed displacement

compression shear

At the mesoscale (Rubino et al., 2011):

• perform time-harmonic oscillatory tests,

• for each frequency ω, compute attenuation and velocity dispersion Yω,

• use these obtained values to compute material properties for the
macroscale problem.
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Mathematical framework for homogenization

Fracture distribution in a Representative Elementary Volume

- deterministic information not available or insufficient 7

- statistical properties 3

Monte Carlo method: N samples to estimate E(Yω)

2D stochastic simulations in

Hunziker, Favino et al., J.

Geophys. Res. (2018)

Monte Carlo
approximation

1

N

N∑
n=1

Y n
ω
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Finite element discretization

Biot’s equations{
−∇ · (σE (u)− αpI) = 0

iα∇ · u + i p
M
− 1
ω
∇ ·

(
k
η
∇p

)
= 0

Discretized Biot’s equations

∣∣∣∣
elasticity︷︸︸︷ coupling︷︸︸︷
A −BT

−iB −iM − 1
ω
C︸︷︷︸

coupling

︸︷︷︸
diffusion

∣∣∣∣ ∣∣∣∣ u
p

∣∣∣∣ =

∣∣∣∣ f
g

∣∣∣∣
Root mean square error (RMSE)

RMSE ≤ Chw︸ ︷︷ ︸
Discretization error

+ DN−1/2︸ ︷︷ ︸
Statistical error

, D2 ≈ Var(Yω)

⇒ many expensive simulations on fine meshes

Meshing is one of the bottlenecks of the problem 7

• elements follow the geometry

• hands-on

• time consuming

• may fail

⇒ unfeasible for realistic networks
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Adaptive mesh refinement for fracture networks

Meshes

• do not have to resolve
fractures

• can be “adapted” to any
fracture distribution

Hierarchy of adapted meshes

Initial mesh (uniform)
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Adaptive mesh refinement for fracture networks

Given a fracture distribution, we can
apply an AMR algorithm:

1 select elements that have a
non-emply overlap with at
least one fracture

2 select neighbor elements such
that the mesh is 1-irregular

3 refine selected elements

Hierarchy of adapted meshes

Initial mesh (uniform)

• Elements do not follow the geometry but refined close to the
interfaces

• More elements where error is larger
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Adaptive mesh refinement for fracture networks

Given a fracture distribution, we can
apply an AMR algorithm:

1 select elements that have a
non-emply overlap with at
least one fracture

2 select neighbor elements such
that the mesh is 1-irregular

3 refine selected elements

Hierarchy of adapted meshes

1 refinement step

• Elements do not follow the geometry but refined close to the
interfaces

• More elements where error is larger
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Adaptive mesh refinement for fracture networks

Given a fracture distribution, we can
apply an AMR algorithm:

1 select elements that have a
non-emply overlap with at
least one fracture

2 select neighbor elements such
that the mesh is 1-irregular

3 refine selected elements

Hierarchy of adapted meshes

2 refinement steps

• Elements do not follow the geometry but refined close to the
interfaces

• More elements where error is larger
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Adaptive mesh refinement for fracture networks

Given a fracture distribution, we can
apply an AMR algorithm:

1 select elements that have a
non-emply overlap with at
least one fracture

2 select neighbor elements such
that the mesh is 1-irregular

3 refine selected elements

Hierarchy of adapted meshes

3 refinement steps

• Elements do not follow the geometry but refined close to the
interfaces

• More elements where error is larger
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Adaptive mesh refinement for fracture networks

Given a fracture distribution, we can
apply an AMR algorithm:

1 select elements that have a
non-emply overlap with at
least one fracture

2 select neighbor elements such
that the mesh is 1-irregular

3 refine selected elements

Hierarchy of adapted meshes

4 refinement steps

• Elements do not follow the geometry but refined close to the
interfaces

• More elements where error is larger
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Adaptive mesh refinement for fracture networks

Given a fracture distribution, we can
apply an AMR algorithm:

1 select elements that have a
non-emply overlap with at
least one fracture

2 select neighbor elements such
that the mesh is 1-irregular

3 refine selected elements

Hierarchy of adapted meshes

5 refinement steps

• Elements do not follow the geometry but refined close to the
interfaces

• More elements where error is larger
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Adaptive mesh refinement for fracture networks

Given a fracture distribution, we can
apply an AMR algorithm:

1 select elements that have a
non-emply overlap with at
least one fracture

2 select neighbor elements such
that the mesh is 1-irregular

3 refine selected elements

Hierarchy of adapted meshes

6 refinement steps

• Elements do not follow the geometry but refined close to the
interfaces

• More elements where error is larger
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Adaptive mesh refinement for fracture networks

Given a fracture distribution, we can
apply an AMR algorithm:

1 select elements that have a
non-emply overlap with at
least one fracture

2 select neighbor elements such
that the mesh is 1-irregular

3 refine selected elements

Hierarchy of adapted meshes

7 refinement steps

• Elements do not follow the geometry but refined close to the
interfaces

• More elements where error is larger
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Adaptive mesh refinement for fracture networks

Given a fracture distribution, we can
apply an AMR algorithm:

1 select elements that have a
non-emply overlap with at
least one fracture

2 select neighbor elements such
that the mesh is 1-irregular

3 refine selected elements
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Finite element method with discontinuous material properties

• Elements do not follow the interface between fractures and
background

• Material properties may be discontinuous over some elements

• Properties are assigned per quadrature point at assembly time

Cij =

∫
Th

k

η
∇φj · ∇φi dx =

∑
qp

wqp
k(xqp)

η(xqp)
∇φj (xqp) · ∇φi (xqp)

• Reduced convergence rate (Babus̆ka, 1970)

‖u − uh‖H1 ≤ Ch1/2

• Larger number of elements at the interfaces
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Software implementation and validation

Algorithm implemented in the FE framework MOOSE

• Developed a new app Parrot

• Extended MOOSE to work with complex-type variables

• AMR already available

Algorithm validated in Favino et al. (2019, submitted)

• Horizontally layered medium (White et al., 1975)

• Spherically shaped gas inclusion in a cube (Pride et al., 2004)

• Two intersecting fractures

• Stochastic fracture networks
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Spherically shaped gas inclusion

No. of nodes: adaptive uniform
4913 4913
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Spherically shaped gas inclusion

No. of nodes: adaptive uniform
9528 35973
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Spherically shaped gas inclusion

No. of nodes: adaptive uniform
33944 274625
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Spherically shaped gas inclusion

No. of nodes: adaptive uniform
134464 2M
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Spherically shaped gas inclusion

No. of nodes: adaptive uniform
733279 16M
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Spherically shaped gas inclusion

No. of nodes: adaptive uniform
2.9M 135 M
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Spherically shaped gas inclusion

Convergence to the analytical solution
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• reproduces the curves over the
all spectrum

• no difference between uniform
and adaptive refinement

• adaptive algorithm needed for
• dispersion at small frequencies
• attenuation at large

frequencies
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Spherically shaped gas inclusion

Convergence to the analytical solution

1    10   100  1000 
10 -3

10 -2

10 -1

1/
Q

Pride el al. (2004)
Mesh16 4 ref

1    10   100  1000 

Frequency (Hz)

8

8.2

8.4

8.6

8.8

9

9.2

re
al

(H
) 

(P
a)

#109

• reproduces the curves over the
all spectrum

• no difference between uniform
and adaptive refinement

• adaptive algorithm needed for
• dispersion at small frequencies
• attenuation at large

frequencies

Marco Favino Hydromechanical Coupling in Fractured Media 10



Stochastic fracture networks

• Up to 3 mesh refinements no
attenuation and velocity
dispersion

• We cannot reproduce peaks
related to
background-to-fracture and
fracture-to-fracture flows

• With 4 refinements, peaks are
present but values are
underestimated

• No difference between 5 and 6
mesh refinements
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Stochastic fracture networks

Simulated fluid pressure for different frequencies

ω = 1e−4 Hz ω = 1e−2 Hz

ω = 1e0 Hz ω = 1e4 Hz
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Conclusions and future works

Conclusions

• Adaptive mesh refinement provides an automatized, foolproof mathod
for meshing fractured media

• Software implementation in the FE framework MOOSE

• Already used in several follow-up studies, see e.g.
• presentation Eva Caspari
• poster Maria Nestola
• poster Santiago Solazzi
• poster Gabriel Quiroga

Future works

• Improve convergence of the discretization method, develop e.g,
multiscale FE, composite FE, or partition of unity method

• A-posteriori error estimate for poroelasticity in time-frequency domain

• Develop an efficient solver exploiting the hierarchy of meshes created
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Thank you for your attention
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Introduction

1 Development of a FE software to study
• seismic attenuation
• modulus dispersion

due to fluid pressure diffusion in fractured rocks

2 Efficient for
• stochastic fracture networks

Marco Favino Hydromechanical Coupling in Fractured Media 15



Hydro-mechanical coupled models

Homogeneous	macroscale:
visco-elastic	model

Heterogenous mesoscale:
large	contrast

in	material	properties
(permeability,	stiffness,	…)

Upscaling

Representative	
Elementary	Volume

Adapted from Jänicke et al. (2015)

Biot’s poroelasticity equations{
−∇ · (σE (u)− αpI) = 0

iα∇ · u + i p
M
− 1
ω
∇ ·

(
k
η
∇p

)
= 0

u: solid displacement
p: fluid pressure
ω: frequency

Time-harmonic oscillatory tests:

- attenuation
- velocity dispersion

}
Yω

Hybrid-dimensional model:
2D fractures

- simplified physics

- simple geometries

Biot’s equations:
3D “thick” fractures

- complete coupled physics

- complex fracture geometries
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Hydro-mechanical coupled models

Model

• Biot’s quasi-static equations

• fractured media (jumping
parameters)

• time-frequency domain
• u and p are complex variables

{
−∇ · (2µε+ λtr(ε)I− αpI) = 0

iωα∇ · u + iω p
M

+∇ ·
(
− k
η
∇p

)
= 0

Computational challenges

• mesh generation

• efficient solution methods for
complex FE

• two different discretization
approaches

a) b)

c) d)

f)e)
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Adaptive mesh refinement for fracture networks

Hierarchy of adapted meshes

Initial mesh (uniform) 3 refinement steps

5 refinement steps 7 refinement steps

Algorithm implemented in MOOSE framework
Validated in Favino et al., J. Comput. Phys. (2018, submitted)
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Adaptive mesh refinement for fracture networks

Simulated fluid pressure for different frequencies

ω = 1e−4 Hz ω = 1e−2 Hz

ω = 1e0 Hz ω = 1e4 Hz

Algorithm implemented in MOOSE framework
Validated in Favino et al., J. Comput. Phys. (2018, submitted)
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FE discretization: complex approach

∣∣∣∣ A −BT

−iB −iM − 1
ωC

∣∣∣∣ ∣∣∣∣ up
∣∣∣∣ =

∣∣∣∣ f
0

∣∣∣∣
Complex FE

• 4 variables in 3D

• complex<double> type (two doubles for each entry)

• not well-conditioned

• better for factorization (direct solvers)

• Generalized Saddle-point problem
• no energy
• not symmetric ⇒ no Lagrangian
• requires ad-hoc solution methods

• e.g. Comsol
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FE discretization: real approach

∣∣∣∣∣∣∣∣
A 0 −BT 0
0 A 0 −BT

0 B − 1
ωC −M

B 0 M − 1
ωC

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
ur

ui

pr

pi

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
fr
fi
0
0

∣∣∣∣∣∣∣∣
Real FE

• 8 variables

• double type (one double per entry)

• better condition number

• better for iterative solvers

• Generalized Saddle-point problem
• no energy
• not symmetric ⇒ no Lagrangian
• requires ad-hoc solution methods
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FE discretization: meshing

Multiscale problem:

• fracture thicknesses ' 10−3 of
domain size

• fractures need to be resolved to
set correct parameters

• Meshing is one of the bottlenecks of the problem 7

• elements follow the geometry
• hands-on
• time consuming
• may fail

⇒ unfeasible for realistic networks
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Fracture Parametrization

Mesh is generated once and then used for several frequencies

2D (5 parameters)

• center point (x,z)

• thickness and length

• dip around y-axis

3D (8 parameters)

• center point (x,y,z)

• thickness, length and width

• dip around y-axis and x-axis

Parameters can be drawn from any distribution (e.g. de Dreuzy, Normal)
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Example of the adaptive algorithm

Example with 6 fractures

• mesh adapted outside the
fracture

• material properties non-constant
on each element

• continuity imposed at hanging
nodes

• mesh adapted periodically
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Example of the adaptive algorithm

Example with 6 fractures

• mesh adapted outside the
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• material properties non-constant
on each element

• continuity imposed at hanging
nodes

• mesh adapted periodically
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Scaling

100 101 102

# of processors

100

101

102

103

T
im

e 
(s

)

Mesh 16 0 refinement

MOOSE real
MOOSE complex
Ideal

100 101 102

# of processors

100

101

102

103
Mesh 16 1 refinement

• better scaling for larger problems

• gain using complex MOOSE
• from 2.2 to 3.6 for refinement 0
• from 3.4 to 4.2 for refinement 1

• results with 4 refinements possible only with complex version
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Random Fracture Distributions

a) b)

c) d)

f)e)

Real values of pressure and vertical real displacement at

10−1 and 103 Hz

Parrot employed to compute

• displacement and
pressure distributions

• dispersion and
attenuation as functions
of frequency

• mean value of 20
stochastic fracture
networks

• see presentation by Eva
Caspari and poster Jürg
Hunziker
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